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Abstract 
 
 

Herein 47 2,4-disubstituted quinazolines were synthesized and tested against Leishmania 

donovani intracellular amastigotes. A structure-activity relationship was conducted and lead to 

the identification of quinazolines with EC50s in the single digit and high nanomolar range with 

favorable antileishmanial selectivity indexes. Quinazoline 2.6 and 2.31 underwent in vivo 

efficacy studies in murine models of visceral leishmaniasis, reducing liver parasitemia by 12 % 

and 24 %, respectively, when given by the intraperitoneal route at 15 mg/kg/day x 5 days. The 

antileishmanial efficacy and easy of synthesis make the 2,4-disubstituted quinazoline compound 

series a suitable platform for the future development of antileishmanial agents.  

A similar series of 50 N2,N4-disubstituted quinazoline-2,4-diamines has also been 

synthesized and tested against multi-drug resistant strains of Acinetobacter baumannii. 

Quinazolines with MICs in the single digit micromolar range were identified within the 

structure-activity relationship. The observed potencies of the top compounds and the easy of 

synthesis lend to the further investigation of in vivo efficacy studies and could be considered a 

suitable platform for the future development of anti-bacterial agents against A. baumannii.  
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Chapter 1: Introduction to Infectious Diseases and Drug Discovery 
 
1.1 Overview 

 
With the recent outbreak of Ebola in West Africa a stronger initiative has been called for 

regarding the research and development of viable drugs needed to treat neglected tropical 

diseases. According to the World Health Organization neglected tropical diseases are a diverse 

group with distinct characteristics that thrive mainly among the poorest populations.1 The 

diseases are caused from four different pathogens: protozoan, bacterial, helminth, and viral. 

Neglected tropical diseases such as malaria, Human African trypanosomiasis, leprosy, 

onchocerciasis, rabies, and leishmaniasis affect over 1 billion people.2 A push from the World 

Health Organization and others is urging countries to better fund projects researching and 

developing new drugs for these neglected diseases.3  

 Another increasing serious threat to the public health of our world is the rapid emergence 

of antimicrobial resistance of infections caused by parasites, viruses, fungi, and bacteria. The 

evolution of resistance is a natural phenomenon that can be accelerated by the use and/or the 

misuse of antimicrobial drugs. When first-line treatments fail, newer more expensive therapies 

must be used causing an increase to healthcare.4 In the 2014 World Health Organization’s Report 

on global surveillance of antimicrobial resistance revealed that antibiotic resistance is no longer a 

prediction but that it is occurring now.5 This is happening worldwide and is causing once 

treatable common infections and minor injuries to kill once again.  

The following sections will discuss the impact of the neglected tropical disease 

leishmaniasis and the antibiotic resistant bacteria Acinetobacter baumannii that plagues our 
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societies. Acinetobacter is a genus of bacteria, which can cause devastating infections in humans 

and has increasing antibiotic resistance. Leishmania is a disease caused by eukaryotic protozoa in 

which transmission to humans can cause several different kinds of infection ranging in severity 

from sores and ulcers on the body to death.6  Current treatments are available for A. baumannii 

and leishmaniasis, but due to the ability of microbes to rapidly reproduce, mutate, and evolve in 

quickly changing environment’s, these treatments are becoming obsolete with increased 

resistance being developed. Investigation into novel antibiotic and antileishmanial agents is 

imperative in the successful treatment and possible eradication of these diseases.  

1.2 Leishmaniasis 
 
1.2.1 Leishmania  
 

Alexander Russels was one of the first to clinically describe leishmaniasis, referring to it 

as Aleppo boil, in 1756.7 Leishmaniasis has been well documented since then and includes 30 

species that infect mammals, 21 of these 30 species causing infection in humans, in over 90 

countries world-wide.8 These species can be divided into two groups of old- and new-world 

species. The old-world species predominately occur in southern Europe, some parts of Asia and 

Africa, whereas the new-world species occur in the America’s.9  Species infectious to humans 

include: L. donovani complex with 2 species (L. donovani, L. infantum), the L. mexicana 

complex with 3 main species (L. mexicana, L. amazonensis, and L. venezuelensis), L. tropica, L. 

major, L. aethiopica, and the subgenus Viannia with 4 main species (L. (V.) braziliensis, L. (V.) 

guyanensis, L. (V.) panamensis, and L. (V.) peruviana).10 Table 1.1 summarizes these species 

showing the distribution and the main reservoirs in which the disease is contained.11 The three 

major forms of infection for this disease are cutaneous, mucocutaneous, and visceral 

leishmaniasis.  



www.manaraa.com

3 
 

Table 1.1 Leishmaniasis species, their distribution, and main reservoirs host. Information obtained from 2005 
publication by Gramiccia, M. and Gradoni, L.11 

 
Disease and Associated 

Strains 
Geographical 
distribution Main reservoir host 

VLa CLb 

L. chagasi 

Mediterranean basin, Middle East, 
Central Asia , China, Central and 

South America 
Dog 

CL 
L. major 

North Africa and Sub-Saharan 
Africa, Middle East and Central 

Asia 
Various rodents 

CL 
L. aethiopica Ethiopia, Kenya Rock hyraxes 

CL 
L. mexicana Central America Various rodents 

CL 
L. amazonensis 

South America, north of the 
Amazon Various rodents 

CL 
L. venezuelensis Venezuela Unknown 

CL, MLc 
L. Viannia 

South America, Central America 
and Mexico 

Numerous rain forest mammals 
(suspected) 

CL 
L. guyanensis Guyanas, Brazil Sloths 

CL 
L. lainsoni Brazil, Bolivia, Peru Rodents 

CL 
L. naiff 

Brazil, French Guyana, Ecuador, 
Peru Armadillos 

CL, ML 
L. panamensis 

Central America, Colombia, 
Ecuador Sloths 

CL 
L. peruviana Peruvian Andes Dog 

CL 
L. shawi Brazil Arboreal mammals (suspected) 

a VL  visceral leishmaniasis, b CL cutaneous leishmaniasis, c ML mucocutaneous leishmaniasis 

 

Cutaneous leishmaniasis is the most common form of infection for leishmaniasis. 

Cutaneous leishmaniasis is characterized by unsightly spontaneous healing ulcers or open sores 

where transmission occurred. These sores can lead to disfiguring scars and disability of the 

infected individual.12 Strains causing cutaneous leishmaniasis include L. infantum, L. mexicana, 

L. amazonensis, L. venezuelensis, L. (V.) braziliensis, L. (V.) guyanensis, L. (V.) panamensis, and 
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L. (V.) peruviana. Mucocutaneous leishmaniasis can develop from a few species that cause 

cutaneous leishmaniasis and it is found primarily in Latin America. This form is the least 

common but can spread from the skin sores to mucosal membranes, including the nose, mouth or 

throat, causing destruction of the tissue leaving large holes in the area.13 Strains known to cause 

mucocutaneous leishmaniasis include L. (V.) braziliensis and L. (V.) panamensis. The most 

severe, common contraction of the disease is visceral leishmaniasis. This form can affect several 

crucial internal organs (usually the spleen, liver, or bone marrow), which could potentially result 

in death. Symptoms include fever, weight loss, enlarged liver and spleen, dry, thin and scaly 

skin, hemorrhaging of the nose, gums and skin.13  Strains associated with causing visceral 

leishmaniasis include L. infantum and L. donovani. According to the World Health Organization 

(WHO) it is estimated that 0.7 to 1.3 million of new cutaneous leishmaniasis cases and 200,000 

to 400,000 new visceral leishmaniasis cases are reported annually, worldwide. It is also 

estimated that 20,000 to 30,000 deaths occur each year due to this disease.12  

 Infection in humans occurs through the bite of infected female sandflies of the genera 

Phlebotomus and Lutzomyia when taking a blood meal (Figure 1.1).14 Infected sandflies inject 

promastigotes (the flagellate stage of the Leishmania parasite) into the host, through the 

proboscis, when taking a blood meal. Macrophages and other mononuclear phagocytic cells 

within the host then phagocytize these promastigotes. It is within these cells that the 

promastigotes transform into amastigotes (does not have a visible external flagella), which 

quickly replicate until the host cell bursts. The amastigotes are then released into the bloodstream 

where the macrophages and other phagocytic cells continually phagocytize them and the 

replication process continues. The completion of the transmission cycle occurs when female 

sandflies take a blood meal from an infected individual. Once ingested the amastigotes transform 
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back to promastigotes in the gut of the sandflies and the cycle of transmission to another host is 

complete.13 It is estimated by the Center for Disease Control (CDC) that 350 million people in 

over 88 countries are at risk of contracting leishmaniasis.8 Although currently treatments are 

available, the emerging resistance to existing therapies is increasing at an alarming rate within 

areas at the greatest risk for infection.  

 

Figure 1.1 Leishmania life cycle14 

 
1.2.2 Anti-leishmanial Drug Discovery 
 

There are several approved drugs currently being used for the treatment of visceral, 

cutaneous, and mucocutaneous leishmaniasis. For well over a century antimonials have been the 

first drug of choice. Gaspar Vianna, in 1912, reported the use of the trivalent antimonial tartar 

emetic for the treatment of cutaneous leishmaniasis specifically caused by L. braziliensis.15 

Trivalent and pentavalent antimonials were shown to have great success in the treatment of 

visceral leishmaniasis in India. This study was conducted by McCombie Young and 

Upendranath Brahmachari in 1982 and showed a decrease in mortality rate due to visceral 
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leishmaniasis in India, from 95 % to 10 % over a 10 year period.16 Two of the most frequently 

prescribed pentavalent antimonials, and the first line of treatment are meglumine antimoniate and 

sodium stibogluconate (Figure 1.2).7, 17 Even though pentavalent antimonials are frequently 

prescribed, these drugs are far from ideal. Administration is normally facilitated in a hospital and 

given either intravenously, or intramuscularly.18 Side effects associated with these compounds 

including muscle pain, fatigue, abdominal pain, nausea and vomiting, and in some cases death.19, 

20 Through the extended use of these pentavalent antimonials an increased resistance in cases of 

visceral leishmaniasis have been reported.21 Over the last 10 years (specifically in Bihar, India) 

antimonial resistance and therapeutic failures have become so prevalent that up to 60 % of new 

visceral leishmaniasis reported in this area show no response to the drugs.22  

Currently, two other drugs that are being used as a second defense against the resistant 

strains are amphotericin B and miltefosine (Figure 1.2). Since the 1960’s amphotericin B has 

been in clinical use showing 90-95 % cure rate of visceral leishmaniasis strains found in India.21 

Typical administration of this drug requires intravenous injections, dosage of 1/mg/kg, every 

other day for a total of 30 days. Side effects associated with amphotericin B include infusion-

related fever and chills, nephrotoxicity, and hypokalemia, which require treatment to be 

delivered within a hospital setting.23 New lipid formulations of amphotericin B have greatly 

improved upon the negative side effects. The increased cost of these new formulations make 

them, in general, cost prohibitive for many poor countries in need.23 In March 2014, the FDA 

approved the use of miltefosine for the treatment of some cutaneous, mucosal, and visceral 

leishmaniasis species.18 Once used as an anticancer drug, for over a decade it has been the only 

orally bioavailable antileishmanial drug prescribed. Treatment with miltefosine requires a dosage 

of 2.5 mg/kg/day over a 28-day period and elicits only mild side effects. 24 In 2006, a preclinical 
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reproductive toxicity study in animals, showed embryo- and fetotoxicity along with teratogenic 

effects when dosing miltefosine 1.2 mg/kg for 10 days during gestation.25 Like many of the 

pentavalent antimonials, decreasing efficacy rates of miltefosine are being seen in parts of India 

and Nepal.26, 27 Due to increased resistance of current anitleishmanials, their unfavorable toxicity, 

and their cumbersome administration, the need for new anitleishmanials is crucial for future 

successful treatment of this disease. 
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Recently, reports have shown that quinazoline compounds have shown favorable activity 

against leishmaniasis and are a promising new frontier for the development of anitleishmanials. 

The half maximal inhibitory concentration (IC50) of amastigotes of  L. donovani with the use of 

quinazolines has been reported by Shakya and Gupta et al., (Figure 1.3 A and B respectively) 

and Bhattacharjee et al., (Figure 1.3 C) with activities below 100 ng/mL in some cases.28-30 

Testing against L. major amastigotes, in human monocyte-derived macrophages, was conducted 

by Berman et al. and reported the half maximal effective concentration (EC50) values as low as 

0.04 nM with a series of 2,4-diaminoquinazolines (Figure 1.3 D).31  

 

Figure 1.3 Quinazolines as Antileishmanials28-31 

 
 
1.2.3 N2,N4-disubstuted quinazoline-2,4-diamines as Antileishmanial Drug Candidates 
 

A previous study published by the Manetsch lab in early 2014, consisted of structure-

activity relationship (SAR) and structure-property relationship (SPR) studies of novel N2,N4-
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disubstuted quinazoline-2,4-diamines involving L. donovani and L. amazonensis intracellular 

amastigotes.32 Within this study 29 structurally diverse quinazoline compounds were synthesized 

based on two initial compounds 1.1 and 1.2. Compounds 1.1 and 1.2 were discovered from a 

small chemically diverse set that was tested against L. mexicana axenic amastigotes revealing 

EC50 values in the single digit micromolar range (Figure 1.4).33 The SAR conducted followed in 

part a Topliss operational scheme to identify new lead compounds.32 Two subseries were 

prepared and tested in order to optimize and validate the N2,N4-disubstuted quinazoline-2,4-

diamines, antileishmanial activity. The first subseries focused on the optimization of the N2- and 

N4- moieties. The second subseries investigated the effect that substitution of the benzenoid ring 

would have on antileishmanial activity.32 Several compounds synthesized were shown to have 

submicromolar or single digit micromolar EC50 values. In general, the aqueous solubility, the 

distribution coefficient (Log D), and the permeability of these quinazolines are within the 

acceptable ranges (solubility of >20 μM, Pe > 10 × 10-6 cm·s-1, 1 < log D < 4), making them 

promising candidates for the development of orally bioavailable antileishmanial agents. From 

these results three compounds, 1.3-1.5, were chosen for further in vivo and pharmacokinetic 

testing based on their EC50 values, selective index SI (ratio of EC50 value for J774A.1 and the 

value for L. donovani), and favorable physiochemical properties (Figure 1.4). In vivo efficacy 

studies revealed that compound 1.5 showed promising antileishmanial efficacy at a dosage of 5 

X 15 mg/kg intraperitoneal injection (ip) with inhibition of liver parasitemia by 37 % compared 

to vehicle control. Compound 1.3, dosage 5 X 30 mg/kg ip, showed no significant 

antileishmanial efficacy. With 1.4, dosage 5 X 10 mg/kg ip, showed no significant difference in 

parasite burden when compared to the vehicle control group.32 Due to the single digit and 

submicromolar inhibition from in vitro studies and favorable physiochemical properties further 
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study into N2,N4-disubstuted quinazoline-2,4-diamines as potential antileishmanial agents is 

warranted. 

 

 

Figure 1.4 N2,N4-Disubstuted quinazoline-2,4-diamines.32 Compounds 1.1 and 1.2 were initial 
hits discovered. Compounds 1.3-1.5 were selected for in vivo testing from developed SAR.32 

 
 
1.2.4 Research Aims 
 

With the exuberant amount of people at risk for contracting leishmaniasis and rapid 

resistance documented against the newest anitleishmanials, the investigation of novel 

antileishmanial agents is imperative. Drugs such as Amphotericin-B, Pentostam, and Miltefosine 

have been primarily used to treat current cases of leishmaniasis. The unfortunate and sometimes 

unbearable side effects, coupled with the inconvenient dosing requirements increase the need for 

better drugs. With the favorable antileishmanial activity shown by the initial investigation of 

N2,N4-disubstuted quinazoline-2,4-diamines, continuation of this study is merited. The initial 

results made apparent three main objectives: (a) further development of an SAR based on 

quinazolines (b) improvement upon antileishmanial activity and key physicochemical properties 

(c) improve the pharmacokinetics and selective index on the entire quinazoline compound series.  
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1.3 Pathogenic Bacteria 
 
1.3.1 Genus Acinetobacter 
 

In 1911, reports of an aerobic, gram-negative, non-fermentative bacterium by the 

microbiologist Martinus Willem Beigerinck were the first known identification of the genus 

Acinetobacter.33 The difference in the classification of bacteria being Gram-positive or Gram-

negative comes from the ability to uptake crystal violet stain when using the gram staining 

technique in bacterial differentiation.40 Gram-positive bacteria are able to retain the crystal violet 

stain during the alcohol wash due to their thick peptidoglycan layer in the cell wall. Gram-

negative species have a thin peptidoglycan layer that is situated between an inner cell membrane 

and a bacterial outer membrane (Figure 1.5).41, 42 The outer bacterial membrane is a unique 

feature of gram-negative bacteria and is useful for the survival of these bacteria when 

encountering different antibiotics. The outer membrane comprised of a lipopolysaccharide acts 

as an endotoxin. When introduced into the circulatory system it can cause a toxic reaction 

resulting in fever, low blood pressure, high respiration, and even endotoxic shock, which can be 

fatal.40, 41 This outer membrane is responsible for resistance of these bacteria to lysosomes and 

penicillin.40,41
  

The CDC has identified six bacteria pathogens, Enterococcus faecium, Staphylococcus 

aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Enterobacter species, (collectively known as ESKAPE) as a growing concern around the world. 

ESKAPE pathogens encompass six different gram-positive and gram-negative bacteria that show 

high antibiotic resistance and are blamed for the majority of hospital-acquired infections.39
 There 

are many known strains associated with the genus Acinetobacter capable of causing human 

infection, but according to the CDC Acinetobacter baumannii is responsible for approximately 
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80 % of all clinical infections reported although the risk of infection occurring in a healthy 

individual is unlikely.34, 37 Although A. baumannii is typically found in the soil and water in hot, 

arid climates, increasing numbers of infections are being reported in climate controlled 

healthcare settings.35, 36 A. baumannii infections commonly occur in patients being treated in 

intensive care and healthcare units tending to the acutely ill.36 A. baumannii is associated with 

infections of the skin and soft-tissue, urinary tract, wounds, blood stream , and surgical sites .37 It 

has also been reported in some cases that soldiers have developed osteomyelitis from deep 

wound infections due to A. baumannii exposure.37 A. baumannii has also been referred to as the 

Iraqibacter due to the multitude of cases reported in military treatment facilities during the Iraq 

war.38  

 
1.3.2 Antibacterials combatting A. baumannii 
 

Multidrug resistance observed in A. baumannii clinical isolates has been attributed to the 

overuse of broad-spectrum antibiotics as a first line of treatment.36, 37, 43 Treatments for A. 

baumannii infections are limited. It is recommended that an individual’s course of treatment be 

decided by culture-directed antimicrobial therapy.38, 43 A. baumannii has developed a plethora of 

resistance mechanisms due to the overuse of antibiotics and its own inherent abilities as a Gram-

negative bacterium. In 2006, the Walter Reed Army Medical Center in Washington, D.C. 

conducted a study on the antibiotic resistance genes in multidrug resistant A. baumannii from 75 

infected military and civilian patients. Of the isolates tested, 89 % were found to be resistant to at 

least three drugs classifying them as multidrug resistant.44 Specific genes responsible for 

antibiotic resistance and the resistance mechanisms have been identified for A. baumannii. 

Certain β-Lactamase genes isolated from A. baumannii have been attributed to the resistance of a 

large set of β-lactam antibiotics and carbapenem.43-48 The identification of several 
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Aminoglycoside-Modifying Enzymes (AME Genes) are responsible from the resistance of a 

number of aminoglycoside antibiotics.48, 49 The resistance of many aminoglycosides, quinolones, 

tetracyclines and trimethoprim is caused by a gene-encoding efflux pumps within the bacteria.57 

Quinolones resistance is again seen in certain point mutations in the DNA of A. baumannii.43  

Research efforts for novel antibiotics are imperative for the successful treatment of the 

ever-growing resistant A. baumannii. Recent studies conducted with quinazoline derivatives have 

shown promising antibiotic activity against multidrug resistant bacteria.50,51 Inhibition of the 

gram-negative species E. aerogenes, K. pneumoniae and P. aeruginosa was reported by 

Chevalier et al. in 2010 with the use of a set of quinazoline compounds affording minimal 

inhibitory concentrations as low as 1.25 mM.50 Fawzy et  al. reported the use of 3-subistuted 

quinazoline derivatives (Figure 1.6 A) against A. baumannii with a zone of inhibition of 12 

mm.49 In 2014 the Manetsch lab reported the activity of N2,N4-disubstuted quinazoline-2,4-

diamines against the multidrug resistant strain Staphylococcus aureus (MRSA) with minimum 

inhibitory concentrations (MICs) in the low micromolar range in addition to favorable 

physicochemical properties.51 Leading to testing of biological activity revealing limited potential 

for resistance to these agents, low toxicity, and highly effective in vivo activity, even with low 

dosing regimens make this compound series a suitable platform for future development of 

antibacterial agents. With four of the six ESKAPE pathogens showing inhibition with the use of 

the quinazoline class of compounds, further investigation into the potential activity against A. 

baumannii is merited.  
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Figure 1.5 Fawzy et al. 3-substituted quinazoline derivatives49 
 
 
1.3.3 Research Aims 
 

The deployment of a large number of soldiers to the Middle East over the past years has 

demonstrated the vulnerability of humans against A. baumannii. The quick resistance of this 

bacterium to commonly prescribed antibiotics increases the need for development of novel 

antibiotic agents. The new class of N2,N4-disubstuted quinazoline-2,4-diamines, which has 

previously shown antibiotic activity against multidrug resistant Staphylococcus aureus, serves as 

a prospective starting point for synthetic development. From the previous study conducted by 

Van Horn et. Al.51 the top compounds found will be tested against A. baumannii to see if the 

indicated chemotype can invoke similar inhibition, leading to the development of a new structure 

activity relationship with the intention of in vivo testing to occur.   
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Chapter 2: Quinazolines as Antileishmanials 
 

Note to Reader 
 
  The work described in Chapter 2, section 2.2 has been reprinted from Bioorganic and 

Medicinal Chemistry, Xiaohua Zhu, Kurt S. Van Horn, Megan M. Barber, Siyung Yang, Michael 

Zhuo Wang, Roman Manetsch, Karl Werbovetz, SAR refinement of antileishmanial N2,N4-

disubstitutedquinazoline-2,4-diamines, available online February 18, 2015, Copyright (2015), 

with permission from Elsevier. 

 
2.1 Synthetic Chemistry 
 

The nine series of N2, N4-disbustituted quinazoline-2,4-diamines were synthesized using 

know procedures (Figure 2.1)1-3. Synthesis begun with cyclization of commercially available 

anthranilic acids (2.A) and urea to afford the quinazoline-2,4-dione (2.B) which was then 

refluxed in phosphorus oxychloride to produce the 2,4-dichloroquinazoline (2.C). Selective 

substitution of the quinazoline at the 4-position occurred readily yielding the 4-amino-2-

chloroquinazoline (2.D) and further substitution  at the 2-position affords the N2, N4-disbustituted 

quinazoline-2,4-diamines (2.E). Upon completion of synthetic analogues 2.C, 2.D, and 2.E 

purification via column chromatography or recrystallization was completed to afford the pure 

product. Analysis of these compounds included proton and carbon spectra, as well as high 

resolution mass spectrometry (HRMS) to ensure products were of ≥ 95 % purity.   
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Figure 2.1 Synthesis of N2, N4-disbustituted quinazoline-2,4-diamines1-3 

 
 

The series of N-benzyl-2-arylquinzaoline-4-amines were synthesized using known 

procedures (Figure 2.2)4. Starting from N-benzyl-2-chloroquinazolin-4-amine (2.F), Suzuki-

Miyaura Cross-Coupling conditions with tetrakis-palladium, 1M sodium carbonate, and 

commercially available boronic acids, under argon, to yield N-benzyl-2-arylquinazolin-4-amine 

(2.G). Upon completion of synthetic analogues 2.F and 2.G purification via column 

chromatography was completed to afford the pure product. Analysis of these compounds 

included proton and carbon spectra, as well as high resolution mass spectrometry (HRMS) to 

ensure products were of ≥ 95 % purity.  

 
Figure 2.2 Synthesis of N-benzyl-2-arylquinzaolin-4-amines4 

 

Initially 2,4-dichloroquinazoline was reacted with phenylboronic acid at room 

temperature with a catalytic amount of tetrakis-palladium and a 1M solution of sodium 
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carbonate, under argon, in attempts to afford the desired product, 2-chloro-4-phenylquinazoline. 

Monitoring of the reaction by thin layer chromatography (TLC) and liquid-chromatography 

mass-spectrometry (LC-MS) showed the formation of three compounds with equal relative 

abundance: 2-chloro-4-phenylquinazoline, 4-chloro-2-phenylquinzaoline, and 2,4-

diphenylquinazoline. The synthesis of the series N-benzyl-4-arylquinazolin-2-amines (Figure 

2.3) was developed to overcome selectivity issues encountered when implementing Suzuki-

Miyaura Cross-Coupling conditions with 2,4-dichloroquinazoline. The hydrolysis of 2,4-

dichloroquinazoline (2.H) to the 2-chloroquinazolin-4(1H)-one (2.I)5 was reacted with 

benzylamine to afford 2-(benzylamino)quinazolin-4(3H)-one (2.J). The chlorination of 2.J, by 

refluxing in phosphorus oxychloride, yielded N-benzyl-4-chloroquinazolin-2-amine (2.K).  

Suzuki-Miyaura Cross-Coupling conditions with tetrakis-palladium, 1M sodium carbonate, and 

commercially available boronic acids, under argon, with 2.K gave N-benzyl-4-arylquinazolin-2-

amines as the final products. Upon completion of synthetic analogues 2.I, 2.J, 2.K, and 2.L 

purification via column chromatography was completed to afford the pure product. Analysis of 

these compounds included proton and carbon spectra, as well as high resolution mass 

spectrometry (HRMS) to ensure products were of ≥ 95 % purity. 

 
Figure 2.3 Synthesis of N-benzyl-4-arylquinazolin-2-amines5 
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2.2 Anti-Leishmanial Activity 
 
2.2.1 Structure Activity Relationship 
 

In an earlier study conducted by the Manetsch group in 2014, showed the in vitro potency 

of N2,N4-dibenzylquinazoline-2,4-diamine 1 against intracellular L. donovani.6 The 

antileishmanial potency and selectivity of analogs of this compound are given in Table 2.1. All 

but two of these compounds displayed EC50 values against intracellular L. donovani ranging 

from 0.39 to 1.1 μM. No clear trend for in vitro antileishmanial activity is observed for 

compounds substituted with methyl, methoxy, and chloro- substituents at the para position of the 

benzyl groups at N2 and N4, although a methoxy group appears to decrease antileishmanial 

activity if it is placed at the para position of the N4 benzyl group as in 2.2 (EC50 = 2.5 μM) and 

2.8 (EC50 = 6.0 μM). Replacing a nitrogen atom with an oxygen atom at position 4 does not 

appear to affect antileishmanial activity (compare 1 with 2.9). The antileishmanial selectivity 

indexes (SI) of these compounds was modest; seven displayed SI values of 5.1–8.2 for 

intracellular L. donovani compared to murine J774.A1 macrophages while three of these 

molecules exhibited SI values <3. The effect of an aryl substitution at position 4 when paired 

with a benzyl substitution at the N2 atom was also examined, as was an aryl substitution at 

position 2 when paired with a benzyl substitution at the N4 atom (Table 2.2). These compounds 

(2.10–2.12) were not active against L. donovani up to a concentration of 10 μM. 
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Table 2.1: Probing the para-position of benzyl substituents of N2,N4-disubstituted 
quinazolin-2,4-diamines9 

Compound R1 R2 L. donovani  

EC50
a μM 

J774A.1 

EC50
b μM SI 

Reference 
1 

  
0.67 ± 0.27c 5.5 ± 1.4c 8.2 

2.1 
  

0.39 ± 0.16 2.1 ± 0.2 5.4 

2.2 
  

2.5 ± 0.2 5.2 ± 2.0 2.1 

2.3  
  

0.82 ± 0.23 4.6 ± 2.4 5.6 

2.4 
  

0. 0.89 ± 0.10 4.5 ± 2.1 5.1 

2.5 
  

0.72 ± 0.10 4.1 ± 2.5 5.7 

2.6  
  

0.61 ± 0.13 3.2 ± 0.1 5.2 

2.7 
  

1.1 ± 0.5 2.9 ± 1.1 2.6 

2.8 
  

6.0 ± 2.9 2.2 ± 1.4 0.37 

2.9 
  

0.65 ± 0.13 3.3 ± 0.1 5.1 

a EC50 value is the mean ± standard deviation of at least three independent experiments. The control 
drug for the in vitro intracellular antileishmanial assay is amphotericin B, which displays an EC50 = 
41 ± 8 nM against L. donovani (n = 20).  
b EC50 value is the mean ± standard deviation of at least three independent experiments. 
Podophyllotoxin is the control compound for the in vitro cytotoxicity assay, exhibiting an EC50 = 21 
± 5 nM against the J774.A1 macrophages (n = 11).  
c From Van Horn et al.6 
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Table 2.2: Probing with 2-phenyl or 4-phenyl-substituted quinazolines9 

Compound R1 R2 L. donovani a 

EC50
a μM 

J774A.1 
EC50 μM SI 

2.10 
  

>10 NDb ND 

2.11 
  

>10 ND ND 

2.12 
  

>10 ND ND 

a The reported value is based on two determinations. The control drug for the in vitro intracellular 
antileishmanial assay is amphotericin B, which displays an EC50 = 41 ± 8 nM against L. donovani (n 
= 20).  
b Not determined 

 
The most potent quinazoline-2,4-diamine against intracellular L. donovani in vitro from 

the previous study6 was N2-benzyl-N4-methylquinazoline-2,4-diamine 2, which displayed an 

EC50 of 0.15 μM against intracellular L. donovani and a selectivity index of 100. Table 2.3 shows 

a series of N4-methylated analogs of this compound. A dramatic decrease in activity is observed 

as smaller substituents were placed at N2 . Aside from the reduction in activity compared to 2.2, 

there is no clear SAR trend in this series, as antileishmanial potency fluctuated when going from 

the N2-cyclopentyl derivative 2.14 (EC50 = 4.4 μM) to the N2-isopropyl and N2-ethyl derivatives 

2.15 and 2.16 (EC50 values >25 μM) to the N2-methyl derivative 2.17 (EC50 = 7.6 μM). Those 

N4-methyl derivatives that were tested displayed less toxicity to J774 macrophages compared to 

the dibenzylated quinazolines shown in Table 2.1, however. 

 
Table 2.3: Probing N2-substituents of N4-methyl-quinazolin-2,4-diamines9 

Compound R1 R2 L. donovani  

EC50
a μM 

J774A.1 
EC50

b μM SI 

Reference 
2   

0.15 ± 0.02c 15 ± 1c 100 
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Table 2.3 (Continued) 

2.13   
20 ± 5 ND ND 

2.14   
4.4 ± 1.2 39 ± 10 8.9 

 
2.15 

   
>25 ND ND 

2.16   
>25 ND ND 

2.17   
7.6 ± 1.3 >133 >17.5 

2.18   
>25 ND ND 

a EC50 value is the mean ± standard deviation of at least three independent experiments. The control 
drug for the in vitro intracellular antileishmanial assay is amphotericin B, which displays an EC50 = 
41 ± 8 nM against L. donovani (n = 20).  
b EC50 value is the mean ± standard deviation of at least three independent experiments. 
Podophyllotoxin is the control compound for the in vitro cytotoxicity assay, exhibiting an EC50 = 21 
± 5 nM against the J774.A1 macrophages (n = 11).  

c From Van Horn et al.6 
 
Earlier work showed that N4-(furan-2-ylmethyl)-N2-isopropyl-7-methylquinazoline-2,4-

diamine exhibited promising activity in L. donovani-infected mice when given at a dose of 15 

mg/kg/day for five days by the ip route.6 We thus synthesized analogs where either the furan-2-

ylmethyl substituent at N4 or the isopropyl substituent at N2 were held constant and substituents 

at the other exocyclic nitrogen atom were varied (Tables 2.4 and 2.5) in an effort to identify 

compounds with improved in vitro activity to take forward to in vivo evaluation. Of the 

compounds possessing an N4-(furan-2-ylmethyl) substituent (Table 2.4), only the derivative 2.22 

bearing a cyclohexyl group at N2 displayed in vitro potency similar to reference compound 3, but 

2.22 showed negligible selectivity for intracellular L. donovani compared to J774 macrophages.  
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Table 2.4: Probing N4-substituents of N2-furfuryl-quinazolin-2,4-diamines9 

Compound R1 R2 L. donovani  

EC50
a μM 

J774A.1 
EC50 b μM SI 

Reference 
3   

2.5 ± 0.4c 17 ± 6c 6.8 

2.19 
  

>25 ND ND 

2.20 
  

>25 ND ND 

2.21 
  

>25 ND ND 

2.22 
  

4.0 ± 2.5 5.3 ± 0.8 1.3 

a EC50 value is the mean ± standard deviation of at least three independent experiments. The control 
drug for the in vitro intracellular antileishmanial assay is amphotericin B, which displays an EC50 = 
41 ± 8 nM against L. donovani (n = 20).  
b EC50 value is the mean ± standard deviation of at least three independent experiments. 
Podophyllotoxin is the control compound for the in vitro cytotoxicity assay, exhibiting an EC50 = 21 
± 5 nM against the J774.A1 macrophages (n = 11).  

c From Van Horn et al.6 
 
When the N2-isopropyl group was held constant (Table 2.5, compounds 2.23–2.31), 

promising in vitro antileishmanial activity was observed with the N4-benzyl (2.23, EC50 = 2.0 

μM), N4-phenyl (2.24, EC50 = 1.9 μM), and N4-isopropyl (2.26, EC50 = 2.3 μM) substituted 

analogs. Of these three compounds, the antileishmanial selectivity is best with the diisopropyl 

derivative 2.26 (SI >13). In the series of N4-isopropyl derivatives (Table 2.5, compounds 2.29–

2.31), the N2-benzyl derivative 2.31 displayed outstanding in vitro potency against L. donovani 

and good selectivity (SI = 19). 

 
Table 2.5: Probing of 4- and 2-substitutions of N2-isopropyl or N4-isopropyl mono-
substituted quinazolin-2,4-diamines9 

Compound R1 R2 L. donovani  

EC50
a μM 

J774A.1 
EC50

b μM SI 

2.23 
  

2.0 ± 0.1 6.7 ± 1.2 3.4 

2.24 
  

1.9 ± 0.2 12 ± 0 6.3 
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Table 2.5 (Continued) 

2.25 
  

8.9 ± 0.1 46 ± 4 5.2 

2.26 
  

2.3 ± 0.5 >30 >13 

2.27 
  

6.1 ± 2.8 31 ± 5 5.1 

2.28   
6.3 ± 1.9 >30 >4.8 

2.29 
  

8.0 ± 2.0 >40 >5 

2.30  
  

11.0 ± 3.0 8.3 ± 5.8 0.75 

2.31  
  

0.38 ± 0.09 7.2 ± 0.2 19 

a EC50 value is the mean ± standard deviation of at least three independent experiments. The control 
drug for the in vitro intracellular antileishmanial assay is amphotericin B, which displays an EC50 = 
41 ± 8 nM against L. donovani (n = 20).  
b EC50 value is the mean ± standard deviation of at least three independent experiments. 
Podophyllotoxin is the control compound for the in vitro cytotoxicity assay, exhibiting an EC50 = 21 
± 5 nM against the J774.A1 macrophages (n = 11).  

 
 
2.2.2 In vivo Efficacy Studies and Pharmacokinetic Studies 
 

 Compounds 2.6 and 2.31 were selected for the in vivo evaluation of PK properties and for 

efficacy in a murine model of visceral leishmaniasis on the basis of their sub-micromolar in vitro 

antileishmanial potency (EC50 values of 0.61 and 0.38 μM, respectively) and fair to good 

selectivity (SI values of 5.2 and 19, respectively). The mean plasma and tissue concentration–

time profiles of 2.6 and 2.31 after ip administration (10 mg/kg) are shown in Figure 2.4 and the 

relevant pharmacokinetic parameters are listed in Table 2.6. Compared with 2.31, 2.6 showed a 

much slower decrease of plasma concentration with a longer terminal t1/2 (9.3 h vs 2.1 h). Both 

compounds accumulated in the target tissues (Table 2.6) with tissue-to-plasma partition 

coefficients ranging from 3.2 to 16 for 2.31 and 20 to 21 for 2.6. After adjusting for dose, 2.6 

exhibited 2.8-fold greater plasma AUC than 2.31. Longer plasma half-life and greater AUC of 
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2.6 are consistent with 2.6 being more metabolically stable (Table 2.6) and exhibiting greater 

tissue partitioning. Both 2.6 and 2.31 were then selected for in vivo antileishmanial evaluation. 

First, these compounds were examined for their toxicity to BALB/c mice. While 2.6 and 2.31 

were toxic to the mice at a dose of 30 mg/kg/day x 5 by the ip route, the compounds had no 

apparent adverse effects on the mice when given by this route at 10 mg/kg/day x 5. This dose 

was thus chosen for evaluation in our murine model of visceral leishmaniasis.7 Quinazoline 2.31 

reduced liver parasitemia by only 23.8 ± 7.5 % and compound 2.6 decreased liver parasitemia by 

12.0 ± 3.2 %, both given ip, compared to infected control groups. The same dose of the control 

drug miltefosine exhibited 93.6 ± 1.4 % inhibition of liver parasitemia when given ip, consistent 

with our previously reported results.6,8 

 
 

 
 

Table 2.6: Pharmacokinetics of 2.6 and 2.31 after ip administration in mice9 

Parametera 

 Compound 2.31  Compound 2.6 

 Plasma Liver Spleen  Plasma Liver Spleen 

AUC (μM ∙ h)  7.14    15.7   

t1/2 (h)  2.1    9.3   

Cmax (μM)b 
  2.15 

 
20.2 

(0.54) 
16.5 

(0.18) 
 1.4 

 25.3 (8.51) 26.6 
(11.4) 

Tmax (h)  0.25    0.5   

Vz/F (L/kg)  1.15    22.3   

Mic t1/2 (min)c   42  
 

 88  
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Figure 2.4 Pharmacokinetic Evaluation (See Page 30). Mean plasma (), liver (), and spleen 
(▲) concentration-time profiles of 2.31 (A) and 2.6 (B) after i.p. administration at a dose of 10 

mg/kg to mice.  Symbols and error bars represent the mean and standard error of triplicate 
determinations.9 
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2.2.3 Summary of Initial Structure Activity Relationship Study 
 
 As illustrated by the in vivo studies reported here with 2.6 and 2.31, the toxicity of the 

2,4-quinazoline diamines in mice continues to limit the dose of these compounds that can be 

administered, restricting the ability to conduct efficacy studies in the murine model of visceral 

leishmaniasis. The synthesis and evaluation of the 2,4-quinazoline diamines reported here 

provides further information regarding the antileishmanial SAR of these molecules, however, 

and lends clues for the synthesis of new analogs with lower toxicity. Future efforts will involve 

the preparation and testing of 2,4-quinazoline diamines containing isopropyl or related small 

alkyl substitutions at the exocyclic nitrogen atoms to maximize efficacy and exposure and 

minimize toxicity in vivo. 

 
2.3 Expanded Structure Activity Relationship Study 
 
 Following the success of the previous study a second SAR was developed in the hopes of 

lowering toxicity of the 2,4-quinazoline diamines. Beginning with Table 2.7 the table consists of 

compounds with substitution of various piperazine moieties at the 2-position while keeping a N-

benzylamine constant in the 4-position. When tested against L. donovani compounds 2.32-2.36, 

although retaining single digit micromolar inhibition concentrations, decreased potency 

compared with the reference compound. However compound 2.36 did show an increase in 

antileishmanial selectivity (SI=12.5). Compound 2.32 had a complete loss of activity when 

compared to the reference compound. 

Table 2.7: Probing 2-substitutions of N4-benzyl-2-piperazinyl-substituted quinazolin-
2,4-diamines 

Compound R1 R2 L. donovani  

EC50
a μM 

J774A.1 
EC50

b μM SI 

Reference 
1   

0.67 ± 0.27c 5.5 ± 1.4c 8.2 H
N

H
N
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a 

EC50 value is the mean ± standard deviation of at least three independent experiments. The control 
drug for the in vitro intracellular antileishmanial assay is amphotericin B, which displays an EC50 = 
41 ± 8 nM against L. donovani (n = 20).  
b EC50 value is the mean ± standard deviation of at least three independent experiments. 
Podophyllotoxin is the control compound for the in vitro cytotoxicity assay, exhibiting an EC50 = 21 
± 5 nM against the J774.A1 macrophages (n = 11).  

c From Van Horn et al.6 
 
 

Further investigation of the effects of piperazines on the activity against L. donovani were 

studied with the synthetic series in Table 2.8, where 4-benzylpiperazin-1-yl is constant in the 4-

position and the 2-position is substituted with different piperazino- or a morphalino- substituent. 

Compound 2.39 showed an increase in inhibition activity compared to 2.35 against L. donovani. 

Compounds 2.37, although not as potent as 2.35, still exhibited single digit micromolar 

inhibition concentration and a six fold increase against the J774A.1 mammalian cell line and a 

high antileishmanial selectivity (SI =30.7). Compounds 2.38, 2.40, and 2.41 lost inhibition 

activity against L. donovani. 

 
 

  

Table 2.7 (Continued) 

2.32 
  

>10 ND ND 

2.33 
  

5.2 13 2.5 

2.34 
  

3.5 15 4.3 

2.35 
  

3.4 7.5 2.2 
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Table 2.8: Probing 2-substitutions of 4-(4-benzylpiperazin-1-yl)-2-quonazoline 

Compound R1 R2 L. donovani  

EC50
a μM 

J774A.1 
EC50

b μM SI 

2.37 
  

5.2 46 8.8 

2.38 
  

>10 ND ND 

2.39  
  

2.8 86 30.7 

2.40  
  

>10 44 ND 

2.41 
  

>10 ND ND 

a EC50 value is the mean ± standard deviation of at least three independent experiments. The control 
drug for the in vitro intracellular antileishmanial assay is amphotericin B, which displays an EC50 = 
41 ± 8 nM against L. donovani (n = 20).  
b EC50 value is the mean ± standard deviation of at least three independent experiments. Podophyllotoxin is 
the control compound for the in vitro cytotoxicity assay, exhibiting an EC50 = 21 ± 5 nM against the J774.A1 
macrophages (n = 11). 

 

The final series of compounds was designed to investigate the effects of substitution on 

the benzoid ring with a new core-scaffold of either N2-methyl-N4-benzyl-quinazolin-2,4-diamine, 

N2,N4-bis(4-chlorobenzyl)quinazoline-2,4-diamine, or N4-(4-chlorobenzyl)-N2-(4-

methoxybenzyl)quinazoline-2,4-diamine. With EC50 values against intracellular L. donovani at or 

below 1.2 μM and favorable antileishmanial selectivity, especially 2.45 SI=37.8, introduction of 

substitution along the benzoid ring has shown compounds with improved in vitro activity to 

possibly take forward to in vivo evaluation.  

Table 2.9: Probing benzenoid ring of the quinazoline scaffold 

Compound R1 R2 R L. donovani  

EC50
a μM 

J774A.1 
EC50

b μM SI 

2.42 
  

6-Cl 0.35 4.8 13.7 
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Table 2.9 (Continued) 

2.43 
  

7-Cl 1.2 7.3 6.1 

2.44 
  

6-OMe 2.5 ND ND 

2.45 
  

7-Cl 0.37 14 37.8 

2.46   7-Cl 0.48 5.1 10.6 

2.47   7-Cl 1.2 ND ND 

a EC50 value is the mean ± standard deviation of at least three independent experiments. The control 
drug for the in vitro intracellular antileishmanial assay is amphotericin B, which displays an EC50 = 
41 ± 8 nM against L. donovani (n = 20).  
b EC50 value is the mean ± standard deviation of at least three independent experiments. 
Podophyllotoxin is the control compound for the in vitro cytotoxicity assay, exhibiting an EC50 = 21 
± 5 nM against the J774.A1 macrophages (n = 11).  
 

2.4 Summary 
 

Following the publication reported from the Manetsch lab earlier this year, an additional 

22 molecules were synthesized and tested. Compounds which exhibited the most potent activity, 

submicromolar range, against L. donovani incorporated the quinazoline-2,4-diamine scaffolds 

with N-benzyl substituents in the 2- and/ or 4- position and  an N2-benzyl-6-chloro-N4-methyl 

substituent combinations. Enhancement of cytotoxicity values for compounds was achieved with 

either a mono or disubstitution of piperazino- substituents. With this enhancement, retention of 

single digit micromolar EC50s against L. donovani was still observed making this a possible 

platform for the future development of anti-leishmanial agents. In vitro efficacy of the 

piperazino- substituted compounds could potentially be improved with substitution along the 

benzoid ring of the scaffold, as this has shown to generally improve activity and antileishmanial 

selectivity. Preliminary data from current in vivo hamster studies indicates promising potential 
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for the class of N2-N4- quinazolin-diamines to become useful bioavailable anti-leishmanial 

agents. 

2.5 Experimental Section 
 
2.5.1 General Information 
 

All commercially available chemical reagents, except for the boronic acids used, and 

anhydrous solvents were purchased from either Sigma Aldrich, Oakwood Products, Inc. or TCI 

America and used without any further purification. Boronic acids used were purchased through 

Frontier Scientific. NMR spectra were recorded at ambient temperature on a 500 MHz Varian 

NMR spectrometer in the solvent indicated. All 1H NMR experiments are reported in δ units, 

parts per million (ppm) downfield of TMS and were measured relative to the signals for 

chloroform (7.26 ppm), methanol (3.31 ppm) and dimethyl sulfoxide (2.50 ppm). All 13C NMR 

spectra were reported in ppm relative to the signals for chloroform (77 ppm), methanol (49 ppm) 

and dimethyl sulfoxide (39.5 ppm) with 1H decoupled observation. Data for 1H NMR are 

reported as follows: chemical shift (δ), multiplicity (s = singlet, d = doublet, t = triplet, q = 

quartet, p = pentet, sext = sextet, sept = septet, oct = octet m = multiplet), integration and 

coupling constant (Hz), whereas 13C NMR analyses were reported in terms of chemical shift. 

NMR data was analyzed by using MestReNova Software ver. 5.3.2-4936. High resolution mass 

spectra (HRMS) were performed on an Agilent LC/MSD TOF system G3250AA. Analytical thin 

layer chromatography (TLC) was performed on silica gel 60 F254 pre-coated plates (0.25 mm) 

from EMD Chemical Inc. and components were visualized by ultraviolet light (254 nm). 

Silicycle silica gel 230-400 (particle size 40-63 μm) mesh was used for all flash column 

chromatography. 
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2.5.2 General Procedures 
 
Procedure A: Cyclization of Anthranilic Acids to the Corresponding Quinazoline-2,4-diones 
 
 One equivalent of the commercially available anthranilic acid and three equivalents of 

urea were combined in a mortar and pestle until a homogenous mixture was obtained. This 

powder was then transferred to a round bottom flask and heated to 200oC uncovered. After 3 

hours the mixture was cooled, 10 mL of water was added, the solid filtered and subsequently 

washed with 40 mL of water. Crude product was dried and no further purification was 

completed.  

 
Procedure B: Chlorination of Quinazoline-2,4-diones to the Corresponding 2,4-
Dichloroquinazoline 
 
 One equivalent of quinazoline-2,4-dione and one equivalent of N,N-dimethylaniline were 

combined in a round bottom flask, 12 equivalents of phosphorus oxychloride was then added. 

The mixture was refluxed under argon until the presence of starting material was no longer seen 

by TLC or by LC-MS (6-24 hours). Upon completion the reaction mixture was cooled and 

slowly added over ice, amount of ice equaled to ten times that of the reaction volume. Upon 

precipitation the reaction was filtered and washed with water to afford the crude 2,4-

dichloroquinazoline which was purified by column chromatography using hexane and ethyl 

acetate (hexane/ethyl acetate = 5:1).  

 
Procedure C: Amine Substitution of 2,4-Dichloroquinazolines to Yield 4-Amino-substituted-2-
chloroquinazoline 
 
 One equivalent of the crude 2,4-dichloroquinazoline, 1.1 equivalents of sodium acetate, 

and 1.1 equivalents of selected primary amine were combined in a round bottom flask and mixed 

with a three to one solution of tetrahydrofuran and water to afford a 0.1 M solution. The reaction 
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was heated to 65oC and monitored until no starting material was seen by TLC or LC-MS. The 

reaction was diluted with ethyl acetate and the organic layer separated. This organic layer was 

washed three times with equal amounts of water and then dried over sodium sulfate. The crude 

4-amino-substituted-2-chloroquinazoline was then purified by column chromatography using 

hexane and ethyl acetate (hexane/ethyl acetate = 5:1).  

 
Procedure D: Amine Substitution of 4-Aminosubstutited-2-chloroquinazolines to Yield 2,4-
Diamino-substituted Quinazolines 
 
 One equivalent of 4-aminosubstituted-2-chloroquinazoline and 1.5 equivalents of amine 

were combined with ethanol to create a 0.2 M solution which was heated to 150oC in a sealed 

tube. The reaction was monitored by TLC and LC-MS for the absence of starting material (8-18 

hours). Solvent was evaporated and crude product was purified via column chromatography 

(dichloromethane/methanol = 10:1).  

 

Procedure E: Arylation of Chloro-Substituted Quinazolines to Yield Aryl-Substituted 

Quinazolines 

 
Mono-chloro-substituted quinazoline (0.37 mmol), boronic acid (0.37 mmol), and 5 mol  

% of tetrakis-palladium catalyst, were mixed with toluene (1.25 mL) and 1 M solution of 

disodium carbonate (0.25 mL) in a round bottom flask and kept at room temperature under 

argon. The progression of the reaction was monitored by TLC and LCMS until no starting 

material was observed. The reaction mixture was then diluted with dichloromethane (2.0 mL) 

and the organic layer was separated and washed with an equal volume of water three times and 

subsequently dried over sodium sulfate. Purification of the final product was completed by 

column chromatography (hexane/ethyl acetate = 5:1). 
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2.5.3 Compound Characterization 
 
Compounds 2.1-2.31, 2.45-2.47, N4-benzyl-2-chloroquinazolin-4-amine, 2,4,6-
trichloroquinazoline, 2,4,7-trichloroquinazoline, and 2,4-dichloro-6-methoxyquinazoline  have 
been previously reported.9,10 

N-benzyl-2-(4-methylpiperazin-1-yl)quinazolin-4-amine (2.32):  N2-benzyl-2-
chloroquinazolin-4-amine 0.10 g (0.37 mmol) was reacted with 4-methylpiperazine and purified 
according to general procedure D to furnish 0.08 g of the title compound as a beige crystalline 
solid in 53 % yield. 1H NMR (500 MHz, CD3OD) δ 7.69 (dd, J = 8.3, 1.3 Hz, 1H), 7.50 (ddd, J = 
8.1, 6.6, 1.3 Hz, 1H), 7.46 (dd, J = 8.5, 1.3 Hz, 1H), 7.33 – 7.28 (m, 4H), 7.26 – 7.22 (m, 1H), 
7.08 (ddd, J = 8.2, 6.6, 1.4 Hz, 1H), 4.89 (s, 3H), 3.89 – 3.82 (m, 4H), 3.64 (dd, J = 6.2, 3.8 Hz, 
4H), 3.52 (s, 2H). 13C NMR (126 MHz, CD3OD) δ 152.0, 150.6, 143.1, 131.5, 124.2, 119.8, 
118.8, 118.3, 116.0, 113.8, 113.0, 102.7, 46.3, 36.6, 36.1, 35.2. HRMS: m/z calculated for 
C20H23N5 [M+H]+ 334.2026; found 334.2039. Rf = 0.26 (DCM/MeOH 10:1) 
 
N-benzyl-2-(4-cyclohexylpiperazin-1-yl)quinazolin-4-amine (2.33): N2-benzyl-2-
chloroquinazolin-4-amine 90.0 mg (0.33 mmol) was reacted with 4-cyclohexyllpiperazine and 
purified according to general procedure D to furnish 27.0 mg of the title compound as a beige 
crystalline solid in 20 % yield. 1H NMR (500 MHz, CD3OD) δ 7.91 (dd, J = 8.1, 1.4 Hz, 1H), 
7.53 (ddd, J = 8.4, 7.0, 1.5 Hz, 1H), 7.40 (dd, J = 8.5, 1.1 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.28 (dd, 
J = 8.4, 6.8 Hz, 2H), 7.22 – 7.18 (m, 1H), 7.13 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 4.76 (s, 2H), 3.82 
(dd, J = 6.2, 4.0 Hz, 4H), 2.60 (t, J = 5.1 Hz, 4H), 2.32 (ddd, J = 11.1, 7.5, 3.3 Hz, 1H), 1.92 – 
1.86 (m, 2H), 1.80 (dt, J = 12.2, 3.0 Hz, 2H), 1.30 – 1.09 (m, 6H). 13C NMR (126 MHz, CD3OD) 
δ 152.1, 150.4, 142.8, 131.5, 124.4, 119.9, 118.9, 118.4, 115.8, 113.9, 113.21, 102.7, 55.8, 40.5, 
36.13, 35.5, 20.0, 17.7, 17.3. HRMS: m/z calculated for C25H31N5 [M+H]+ 402.2652; found 
402.2660. Rf = 0.26 (DCM/MeOH 10:1) 
 
N-benzyl-2-(phenylpiperazin-1-yl)quinazolin-4-amine (2.34): N2-benzyl-2-chloroquinazolin-
4-amine 90 mg (0.33 mmol) was reacted with phenylpiperazine and purified according to general 
procedure D to furnish 21.0 mg  of the title compound as a beige crystalline solid in 21 % 
yield.1H NMR (500 MHz, CD3OD) δ 7.91 – 7.88 (m, 1H), 7.55 – 7.51 (m, 1H), 7.42 – 7.36 (m, 
3H), 7.30 – 7.27 (m, 2H), 7.24 – 7.18 (m, 3H), 7.13 – 7.09 (m, 1H), 6.97 – 6.93 (m, 2H), 6.85 – 
6.81 (m, 1H), 4.77 (s, 2H), 3.95 – 3.91 (m, 4H), 3.09 (dd, J = 10.3, 5.1 Hz, 4H). 13C NMR (126 
MHz, CD3OD) δ 160.2, 158.8, 151.6, 151.2, 139.6, 132.4, 128.6, 128.0, 126.9, 126.5, 124.0, 
121.9, 121.2, 119.9, 116.4, 110.8, 49.5, 44.2, 43.9. HRMS: m/z calculated for C25H25N5 [M+H]+ 
396.2183; found 396.2178. Rf = 0.41 (DCM/MeOH 10:1) 
 
N-benzyl-2-(4-benzylpiperazin-1-yl)quinazolin-4-amine (2.35): N2-benzyl-2-
chloroquinazolin-4-amine 0.10 g (0.37 mmol) was reacted with 4-benzylpiperazine and purified 
according to general procedure D to furnish 38.0 mg  of the title compound as a beige crystalline 
solid in 23 % yield. 1H NMR (500 MHz, CD3OD) δ 8.09 (dd, J = 8.2, 0.9 Hz, 1H), 7.71 (ddd, J = 
8.4, 7.0, 1.4 Hz, 1H), 7.58 (d, J = 8.0 Hz, 1H), 7.55 – 7.53 (m, 2H), 7.46 (dd, J = 10.4, 4.8 Hz, 
2H), 7.38 (t, J = 7.3 Hz, 1H), 7.30 (ddd, J = 8.1, 7.0, 1.1 Hz, 1H), 4.93 (s, 2H), 4.03 – 3.97 (m, 
4H), 3.52 – 3.48 (m, 1H), 2.80 – 2.75 (m, 4H), 2.07 (d, J = 10.8 Hz, 2H), 1.97 (d, J = 12.3 Hz, 
2H), 1.41 (d, J = 7.7 Hz, 2H). 13C NMR (126 MHz, CD3OD) δ 160.2, 158.8, 151.6, 139.6, 132.4, 



www.manaraa.com

39 
 

128.6, 128.0, 126.9, 126.5, 124.0, 122.0, 121.2, 119.9, 116.4, 110.8, 49.5, 44.2, 43.9. HRMS: 
m/z calculated for C26H27N5 [M+H]+ 410.2339; found 410.2344. Rf = 0.28 (DCM/MeOH 10:1) 
 
N-benzyl-2-(4-(2,4-difluorophenyl)piperazin-1-yl)quinazolin-4-amine (2.36): N2-benzyl-2-
chloroquinazolin-4-amine 90.0 mg (0.33 mmol) was reacted with 2,4-difluorophenylpiperazine 
and purified according to general procedure D to furnish 87.0 mg  of the title compound as a 
yellow crystalline solid in 50 % yield. 1H NMR (500 MHz, CD3OD) δ 7.87 (dd, J = 8.2, 1.4 Hz, 
1H), 7.47 (ddd, J = 8.3, 6.8, 1.5 Hz, 1H), 7.40 (dd, J = 8.5, 1.2 Hz, 1H), 7.35 – 7.31 (m, 2H), 
7.23 (dd, J = 8.4, 6.8 Hz, 2H), 7.18 – 7.13 (m, 1H), 7.06 (ddd, J = 8.1, 6.8, 1.3 Hz, 1H), 6.87 – 
6.79 (m, 2H), 6.73 (dddd, J = 9.0, 7.9, 2.9, 1.3 Hz, 1H), 4.73 (s, 2H), 3.92 – 3.87 (m, 4H), 2.90 – 
2.84 (m, 4H). 13C NMR (126 MHz, CD3OD) δ 161.0, 159.9, 159.8, 158.0, 157.9, 157.6, 157.5, 
155.6, 155.5, 152.4, 140.6, 137.7, 137.7, 137.6, 137.6, 133.2, 128.9, 127.9, 127.4, 125.2, 122.8, 
122.0, 120.7, 120.7, 120.6, 120.6, 111.8, 111.3, 111.3, 111.2, 111.1, 105.1, 104.9, 104.9, 104.7, 
51.7, 51.7, 45.2, 44.9. HRMS: m/z calculated for C25H23F2N5 [M+H]+ 432.1994; found 
432.2007. Rf = 0.74 (DCM/MeOH 10:1) 
 
4-(4-benzylpiperazin-1-yl)-2-chloroquinazoline: Commercially available 2,4-
dichloroquinazoline 0.31 g (1.76 mmol) was reacted with 4-benzylpiperazine and purified 
according to general procedure C to furnish 0.44 g  of the title compound in 67 % yield. 1H NMR 
(500 MHz, CD3OD) δ 8.02 (dd, J = 8.4, 0.9 Hz, 1H), 7.80 (ddd, J = 8.4, 7.0, 1.3 Hz, 1H), 7.69 
(dd, J = 8.4, 0.8 Hz, 1H), 7.52 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.40 – 7.32 (m, 4H), 7.30 – 7.26 
(m, 1H), 3.98 – 3.94 (m, 4H), 3.61 (s, 2H), 2.69 – 2.64 (m, 4H). 13C NMR (126 MHz, CD3OD) δ 
164.9, 156.0, 152.7, 137.0, 133.5, 129.2, 128.0, 127.1, 126.2, 125.6, 125.4, 114.1, 62.4, 52.5, 
49.0. Rf = 0.32 (DCM/MeOH 10:1) 
 
N-benzyl-4-(benzylpiperazin-1-yl)quinazolin-2-amine (2.37): 4-(4-benzylpiperazin-1-yl)-2-
chloroquinazoline 90.0 mg (0.27 mmol) was reacted with benzylamine and purified according to 
general procedure D to furnish 25.0 mg  of the title compound as a beige crystalline solid in 32 
% yield.  1H NMR (500 MHz, CD3OD) δ 7.70 (dd, J = 8.3, 0.9 Hz, 1H), 7.51 (ddd, J = 8.4, 6.9, 
1.4 Hz, 1H), 7.41 (d, J = 8.3 Hz, 1H), 7.34 – 7.29 (m, 6H), 7.25 (ddd, J = 8.6, 6.7, 3.5 Hz, 3H), 
7.20 – 7.16 (m, 1H), 7.07 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 4.61 (s, 2H), 3.67 – 3.62 (m, 4H), 3.49 
(s, 2H), 2.51 (s, 4H). 13C NMR (126 MHz, CD3OD) δ 165.7, 158.7, 153.2, 136.9, 132.5, 129.3, 
128.0, 128.0, 127.1, 126.8, 126.4, 125.3, 120.5, 62.5, 52.5, 49.1, 44.6. HRMS: m/z calculated for 
C26H27N5 [M+H]+ 410.2339; found 410.2353. Rf = 0.13 (DCM/MeOH 10:1) 
 
2,4-bis(4-benzylpiperazin-1-yl)quinazoline (2.38): 4-(4-benzylpiperazin-1-yl)-2-
chloroquinazoline 60.0 mg (0.18 mmol) was reacted with 4-benzylpiperazine and purified 
according to general procedure D to furnish 73.0 mg  of the title compound as a beige crystalline 
solid in 74 % yield  1H NMR (500 MHz, CD3OD) δ 7.79 (d, J = 8.1 Hz, 1H), 7.57 (t, J = 7.6 Hz, 
1H), 7.49 (d, J = 8.3 Hz, 1H), 7.39 (d, J = 7.1 Hz, 2H), 7.35 (t, J = 7.5 Hz, 2H), 7.30 – 7.23 (m, 
3H), 7.15 (t, J = 7.5 Hz, 1H), 7.04 (d, J = 8.1 Hz, 2H), 6.87 (t, J = 7.3 Hz, 1H), 4.05 – 4.0 (m, 
4H), 3.76 (s, 4H), 3.63 (s, 2H), 3.25 – 3.22 (m, 4H), 2.73 – 2.66 (m, 4H). 13C NMR (126 MHz, 
CDCl3) δ 165.7, 158.2, 154.2, 151.5, 137.8, 132.5, 129.2, 128.4, 127.3, 126.1, 125.2, 120.7, 
120.0, 116.5, 112.1, 63.1, 52.9, 49.8, 49.5, 44.1, 29.8. HRMS: m/z calculated for C30H34N6 
[M+H]+ 479.6312; found 479.6330. Rf = 0.56 (DCM/MeOH 10:1) 
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4-(4-benzylpiperazin-1-yl)-2-(4-cyclohexylpiperazin-1-yl)quinazoline (2.39): 4-(4-
benzylpiperazin-1-yl)-2-chloroquinazoline 60.0 mg (0.18 mmol) was reacted with 4-
cyclohexylpiperazine and purified according to general procedure D to furnish 65.0 mg  of the 
title compound as a beige crystalline solid in 65 % yield. 1H NMR (500 MHz, CD3OD) δ 7.88 
(dd, J = 8.3, 1.0 Hz, 1H), 7.68 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.63 (dd, J = 8.5, 1.1 Hz, 1H), 7.52 
– 7.46 (m, 4H), 7.42 (ddd, J = 9.4, 4.0, 2.0 Hz, 1H), 7.26 (ddd, J = 8.2, 6.8, 1.3 Hz, 1H), 4.07 – 
4.0 (m, 4H), 3.86 – 3.79 (m, 4H), 3.71 (s, 2H), 3.48 (dt, J = 3.3, 1.6 Hz, 1H), 2.83 – 2.74 (m, 
8H), 2.07 (d, J = 10.5 Hz, 2H), 1.96 (d, J = 12.2 Hz, 2H), 1.48 – 1.35 (m, 5H). 13C NMR (126 
MHz, CD3OD) δ 165.5, 161.5, 157.9, 153.7, 137.0, 132.4, 129.2, 128.0, 127.1, 125.1, 120.7, 
111.7, 63.8, 62.6, 52.5, 49.2, 48.7, 43.6, 28.1, 25.8, 25.5. HRMS: m/z calculated for C29H38N6 
[M+H]+ 471.3231; found 471.3232. Rf = 0.32 (DCM/MeOH 10:1) 
 
4-(4-benzylpiperazin-1-yl)-2-(4-methylpiperazin-1-yl)quinazoline (2.40): 4-(4-
benzylpiperazin-1-yl)-2-chloroquinazoline 60.0 mg (0.18 mmol) was reacted with 4-
methylpiperazine and purified according to general procedure D to furnish 50.0 mg  of the title 
compound as a beige crystalline solid in 59 % yield.  1H NMR (500 MHz, CD3OD) δ 7.70 (d, J = 
8.2 Hz, 1H), 7.53 – 7.49 (m, 1H), 7.47 – 7.44 (m, 1H), 7.35 – 7.29 (m, 4H), 7.25 (dt, J = 8.3, 1.8 
Hz, 1H), 7.08 (dd, J = 11.3, 3.8 Hz, 1H), 3.87 (s, 4H), 3.69 – 3.61 (m, 4H), 3.54 (s, 2H), 2.61 – 
2.55 (m, 4H), 2.52 – 2.45 (m, 4H), 2.31 (s, 3H). 13C NMR (126 MHz, CD3OD) δ 166.8, 159.2, 
155.0, 138.3, 133.7, 130.5, 129.3, 128.4, 126.4, 126.4, 122.1, 112.9, 63.8, 55.8, 53.7, 50.5, 46.1, 
44.6. HRMS: m/z calculated for C24H30N6 [M+H]+ 403.2605; found 403.2610. Rf = 0.35 
(DCM/MeOH 10:1) 
 
4-(4-(4-benzylpiperazin-1-yl)quinazolin-2-yl)morpholine (2.41): 4-(4-benzylpiperazin-1-yl)-
2-chloroquinazoline 60.0 mg (0.18 mmol) was reacted with morpholine and purified according to 
general procedure D to furnish 37.0 mg  of the title compound as a beige crystalline solid in 54 
% yield.  1H NMR (500 MHz, DMSO) δ 7.73 (d, J = 8.2 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.37 (d, J 
= 8.4 Hz, 1H), 7.33 (d, J = 4.3 Hz, 4H), 7.25 (dd, J = 8.5, 4.3 Hz, 1H), 7.10 (dd, J = 11.1, 4.0 Hz, 
1H), 3.74 – 3.70 (m, 4H), 3.66 – 3.62 (m, 4H), 3.54 (s, 2H), 2.58 – 2.52 (m, 4H), 2.48 (dd, J = 
5.0, 3.3 Hz, 4H). 13C NMR (126 MHz, DMSO) δ 165.4, 158.1, 154.1, 138.4, 133.0, 129.4, 128.7, 
127.5, 126.2, 125.8, 121.2, 111.9, 66.6, 62.5, 52.8, 49.8, 44.6. HRMS: m/z calculated for 
C23H27N5O [M+H]+ 390.2288; found 390.2295.  
 
2,6-dichloro-N-methylquinazolin-4-amine: 0.13 g (0.54 mmol) of 2,4,6-trichloroquinazoline 
was reacted with methylamine and purified according to general procedure C to furnish 0.11 g of 
the title compound in 92 % yield. 1H NMR (500 MHz, CDCl3) δ 7.69 (d, J = 9.1 Hz, 1H), 7.37 
(dd, J = 9.1, 2.6 Hz, 1H), 6.97 (d, J = 2.7 Hz, 1H), 3.86 (s, 3H), 3.22 (d, J = 4.8 Hz, 3H). 13C 
NMR (126 MHz, CDCl3) δ 161.2, 158.9, 151.5, 139.6, 126.9, 123.5, 122.2, 111.7, 28.6. Rf = 
0.82 (DCM/MeOH 10:1) 
 
N2-benzyl-6-chloro-N4-methylquinazoline-2,4-diamine (2.42): 0.10 g (0.44 mmol) of 2,6-
dichloro-N-methylquinazolin-4-amine was reacted with benzylamine and purified according to 
general procedure D to furnish 87.0 mg of the title compound as a white crystalline solid in 45 % 
yield. 1H NMR (500 MHz, CDCl3) δ 7.48 – 7.44 (m, 2H), 7.44 – 7.37 (m, 3H), 7.33 (t, J = 7.6 
Hz, 2H), 7.27 (q, J = 3.4, 2.4 Hz, 1H), 4.73 (d, J = 5.9 Hz, 2H), 3.09 (d, J = 4.8 Hz, 3H). 13C 
NMR (126 MHz, CDCl3) δ 160.0, 159.6, 150.5, 139.8, 133.0, 128.5, 127.7, 127.3, 127.1, 125.8, 



www.manaraa.com

41 
 

120.2, 111.9, 45.6, 28.1. HRMS: m/z calculated for C16H15ClN4 [M+H]+ 299.7701; found 
299.7703. Rf = 0.33 (DCM/MeOH 10:1) 
 
2,7-dichloro-N-methylquinazolin-4-amine: 0.20 g (0.86 mmol) of 2,4,7-trichloroquinazoline 
was reacted with methylamine and purified according to general procedure C to furnish 0.17 g of 
the title compound in 72 % yield. 1H NMR (500 MHz, CDCl3) δ 7.72 (d, J = 2.0 Hz, 1H), 7.62 
(d, J = 8.8 Hz, 1H), 7.39 (dd, J = 8.7, 2.0 Hz, 1H), 3.22 (d, J = 4.9 Hz, 3H). 13C NMR (126 MHz, 
CDCl3) δ 161.2, 158.9, 151.5, 139.6, 126.9, 122.2, 123.5, 111.7, 28.6. Rf = 0.80 (DCM/MeOH 
10:1) 
 
N2-benzyl-7-chloro-N4-methylquinazoline-2,4-diamine (2.43): 0.15 g (0.66 mmol) of 2,7-
dichloro-N-methylquinazolin-4-amine was reacted with benzylamine and purified according to 
general procedure D to furnish 66.0 mg of the title compound as a white crystalline solid in 68 % 
yield. 1H NMR (500 MHz, DMSO) δ 8.21 – 8.11 (m, 1H), 8.08 (d, J = 8.5 Hz, 1H), 7.51 (d, J = 
7.8 Hz, 2H), 7.44 (t, J = 7.8 Hz, 2H), 7.35 (q, J = 7.5, 6.3 Hz, 2H), 7.18 (d, J = 8.6 Hz, 1H), 4.70 
(d, J = 6.4 Hz, 2H), 3.53 (s, 1H), 3.09 (d, J = 4.5 Hz, 3H). 13C NMR (126 MHz, DMSO) δ 160.9, 
153.5, 141.7, 137.4, 128.7, 128.0, 127.0, 125.4, 124.2, 120.7, 111.0, 110.8, 44.6, 28.2. HRMS: 
m/z calculated for C16H15ClN4 [M+H]+ 299.7701; found 299.7698. Rf = 0.38 (DCM/MeOH 
10:1) 
 
2-chloro-6-methoxy-N-methylquinazolin-4-amine: 0.10 g (0.44 mmol) of 2,4-dichloro-6-
methoxyquinazoline was reacted with methylamine and purified according to general procedure 
C to furnish 81.0 mg of the title compound in 83 % yield. 1H NMR (500 MHz, CDCl3) δ 8.12 (d, 
J = 7.5 Hz, 1H), 7.56 (dd, J = 7.5, 1.5 Hz, 1H), 6.78 (d, J = 1.4 Hz, 1H), 3.87 (s, 2H), 2.91 (s, 
2H), 2.30 (s, 1H). 13C NMR (126 MHz, CDCl3) δ 160.7, 158.5, 154.2, 148.7, 127.3, 121.8, 
110.5, 109.0, 55.8, 28.3. Rf = 0.48 (DCM/MeOH 10:1) 
 
N2-benzyl-6-methoxy-N4-methylquinazoline-2,4-diamine (2.44): 70.0 mg (0.24 mmol) of 2-
chloro-6-methoxy-N-methylquinazolin-4-amine was reacted with benzylamine and purified 
according to general procedure D to furnish 30.0 mg of the title compound as a white crystalline 
solid in 45 % yield. 1H NMR (500 MHz, CDCl3) δ 7.45 (d, J = 9.1 Hz, 1H), 7.41 (d, J = 7.1 Hz, 
2H), 7.32 (t, J = 7.6 Hz, 2H), 7.28 – 7.21 (m, 2H), 6.87 (d, J = 2.7 Hz, 1H), 4.73 (d, J = 5.7 Hz, 
2H), 3.83 (s, 3H), 3.11 (d, J = 4.7 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 160.3, 158.5, 154.2, 
146.7, 140.2, 128.4, 127.7, 127.0, 126.9, 123.1, 111.0, 101.4, 55.7, 45.7, 28.1. HRMS: m/z 
calculated for C17H18N4 [M+H]+ 295.3510; found 295.3509. Rf = 0.26 (DCM/MeOH 10:1) 
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Chapter 3: Quinazolines as Potential Antibacterial Agents 
 
3.1 Synthetic Chemistry 
 
 For the general synthesis of the series N2, N4-disbustituted quinazoline-2,4-diamines 

please refer to section 2.1.  

 Synthesis of N2-benzyl-6-bromo-N4-methylquinazoline-2,4-diamine followed procedures 

outlined in Figure 2.1. The series of N2-benzyl-N4-methyl-6-alken-yl-quinazoline-2,4-diamine, 

N2-benzyl-N4-methyl-6-aryl-quinazoline-2,4-diamine, and N2-benzyl-N4-methyl-6-alkan-yl-

quinazoline-2,4-diamine were synthesized following reported procedures (Figure 3.1).1 Suzuki-

Miyaura Cross-Coupling conditions with tetrakis-palladium, saturated sodium bicarbonate, and 

commercially available boronic acids, under argon, with 3.A afforded both the N2-benzyl-N4-

methyl-6-alken-yl-quinazoline-2,4-diamine and N2-benzyl-N4-methyl-6-aryl-quinazoline-2,4-

diamine, which were purified by column chromatography and had proton spectra, carbon spectra, 

and HRMS characterization completed. The subsequent hydrogenation of 3.B with palladium on 

carbon in methanol under 1 atm at room temperature gave the products of N2-benzyl-N4-methyl-

6-alkan-yl-quinazoline-2,4-diamine with which purification by column chromatography and 

characterization as described above was conducted. 

 



www.manaraa.com

44 
 

N

N

NH

N
H

RB(OH)2
Pd(PPh3)4
NaHCO3
toluene N

N

NH

N
H

3.A 3.B

H2 Pd/C
methanol
1 atm r.t.

N

N

NH

N
H

3.C

R1

R2

Br

R1:
O

R2:

 
 

Figure 3.1 Synthesis of N2-benzyl-N4-methyl-6-alken-yl-quinazoline-2,4-diamine, N2-benzyl-N4-
methyl-6-aryl-quinazoline-2,4-diamine, and N2-benzyl-N4-methyl-6-alkan-yl-quinazoline-2,4-

diamine 
 
 

3.2 Initial Anti-Bacterial Activity 
 
 The initial success of the N2,N4-disubstituted quinazoline-2,4-diamine compound class as 

antibacterial agents against MRSA motivated us to question the potential of these compounds to 

target other multi-drug resistant bacteria.2 This initiated the testing of top frontrunner compounds 

from previously reported, antibacterial and antileishmanial N2,N4-disubstituted quinazoline-2,4-

diamines to be tested against six different clinical isolates of multi-drug resistant A. baumannii 

strains leading to the construction of tables 3.1 and 3.2.2-4 Compounds 3.1, 3.2, and 3.5 have not 

been published but were previously discussed in the follow-up SAR conducted for chapter 2. In 

both tables little to no activity was reported for most compounds against the A. baumannii strain 

1403. However compounds 3.1, 3.2, and 3.5 displayed modest antibacterial activity at single 

digit micromolar MIC concentrations against less resistant strains. These results indicate the 

potential of quinazoline series to develop a new SAR focusing A. baumannii. 



www.manaraa.com

45 
 

Table 3.1: Study Focusing on the Benzoid Ring Substitution of quinazoline-2,4-diamines2-4 

Compound R 
1403 
MIC 
µMa 

1646 
MIC 
µM 

1649 
MIC 
µM 

1650 
MIC 
µM 

1651 
MIC 
µM 

1652 
MIC 
µM 

IC50 
THP-1 
(µM)b 

3.1 
N

N

HN

N
H

Cl

 

50 2 25 15 6 20 NDc 

3.2 
N

N

HN

N
H

Cl

 

>50 6 30 >50 10 50 ND 

3.3 
N

N

HN

N
H

Cl
 

>25 ND ND ND ND ND ND 

3.4 N

N

HN

N
H

Cl

O
 

>25 ND ND ND ND ND ND 

3.5 
N

N

HN

N
H

O

 

>50 2 25 50 10 30 ND 

3.6 
N

N

HN

N
H

O

O

 

>25 ND ND ND ND ND ND 

3.7 
N

N

HN

N
H

O O

 

>25 ND ND ND ND ND ND 

3.8 
N

N

HN

N
H

O

 

>25 ND ND ND ND ND ND 

3.9 
N

N

HN

N
H

O

 

>25 ND ND ND ND ND ND 

a The control drug for the in vitro A. baumannii assay is Tigecycline, which displays an MIC= 0.85 µM against 
all tested strains of A. baumannii.  
b Tetracycline is the control compound for the in vitro cytotoxicity assay exhibiting an IC50 = 148.5 µM against 
the THP-1 cell-line.  
c Not determined. 
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Table 3.2: Study Focusing on the 2,4-position of quinazoline-2,4-diamines2-4 

Compound R 
1403 
MIC 
µMa 

1646 
MIC 
µM 

1649 
MIC 
µM 

1650 
MIC 
µM 

1651 
MIC 
µM 

1652 
MIC 
µM 

IC50 
THP-1 
(µM)b 

3.10 
N

N

HN

N
H

 

>50 50 >50 >50 >50 >50 >50 

3.11 
N

N

HN

N
H  

>50 50 >50 >50 >50 >50 >50 

3.12 
N

N

HN

N
H

 

>25 NDc ND ND ND ND ND 

3.13 
N

N

HN

N
H  

>25 ND ND ND ND ND ND 

3.14 
N

N

HN

N
H

 

>25 ND ND ND ND ND ND 

3.15 
N

N

HN

N
H

Cl

Cl  

>25 ND ND ND ND ND ND 

3.16 
N

N

HN

N
H

O

O  

>25 ND ND ND ND ND ND 

3.17 
N

N

HN

N
H

 

>25 ND ND ND ND ND ND 

3.18 
N

N

HN

N
H

O  

>25 ND ND ND ND ND ND 

3.19 
N

N

HN

N
H  

>25 ND ND ND ND ND ND 

3.20 
N

N

HN

N
H  

>25 ND ND ND ND ND ND 
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Table 3.2 (Continued) 

3.21 
N

N

HN

N
H

 

>25 ND ND ND ND ND ND 

3.22 
N

N

HN

N
H

O

 
>25 ND ND ND ND ND ND 

3.23 

N

N

HN

N
H  

>25 ND ND ND ND ND ND 

a The control drug for the in vitro A. baumannii assay is Tigecycline, which displays an MIC= 0.85 µM against all 
tested strains of A. baumannii.  
b Tetracycline is the control compound for the in vitro cytotoxicity assay, exhibiting an IC50 = 148.5 µM against the 
THP-1 cell-line.  
c Not determined. 
 
 
3.3 Structure-Activity Relationship 
 
 Table 3.3 was developed with the intention of varying the benzoid ring substitution at the 

6 or 7-position for continuation of compounds 3.1, 3.2, and 3.5 series. Compounds 3.24 and 3.27 

kept similar activity against all strains as compared with the reference compounds 3.1, 3.2, and 

3.5. Compound 3.26 displayed decreased activity in all tested strains when compared to other 

reported compounds in this table. There was however compound 3.25 with increased potency 

against the 1403 strain, when compared to the reference compounds. Until this point, the most 

active compound against the 1403 strain had an MIC of 50 µM, whereas 3.25 was at least five 

times more potent while also having an EC50 concentration of 12.9 µM for the THP-1 cell line. 

THP-1 is a human monocyte cell line derived from an acute monocytic leukemia patient.5 

Cytotoxicity was also determined for compound 3.24 (EC50 = 6.1 µM) but was found to be 

almost twice as toxic in comparison to 3.25. 
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Table 3.3: Probing Benzoid Ring Substitution of N2-benzyl-N4-methyl-quinazolines-2,4-diamines 

N

N

HN

N
H

R

 

Compound R 
1403 
MIC 
µMa 

1646 
MIC 
µM 

1649 
MIC 
µM 

1650 
MIC 
µM 

1651 
MIC 
µM 

1652 
MIC 
µM 

IC50 
THP-1 
(µM)b 

3.24 6-Br 50 2 12 15 8 20 6.1 

3.25 6-Me 10 2 25 50 10 20 12.9 

3.26 7-Br >50 6 25 >50 10 >50 NDc 

3.27 7-Me 50 12 25 50 12 35 ND 

a The control drug for the in vitro A. baumannii assay is Tigecycline, which displays an MIC= 0.85 µM against all 
tested strains of A. baumannii.  
b Tetracycline is the control compound for the in vitro cytotoxicity assay, exhibiting an IC50 = 148.5 µM against the 
THP-1 cell-line.  
c Not determined. 
 

 Tables 3.4 and 3.5 were developed to determine the effects on activity when variation of 

the amine in the 2 or 4-position occurred. Table 3.4 scaffold now contains the benzylamine at the 

4-position and the methylamine at the 2-position. With this different 2,4-substitution, as 

compared with Table 3.3, almost all activity in every tested strain, except 1646 and 1651, was 

lost. This dramatic loss in activity across the multiple strains indicates that the 2-benzylamine 

and 4-methylamine substitution could possibly be a key to the compounds activity against A. 

baumannii. The synthesized compounds in Table 3.5 studied the extension of the aromatic ring 

substituent from a 2-benzylamine to a 2-phenethylamine and its effects on the activity against the 

six strains. This substitution caused a loss of activity in all strains, except 1646 and 1652, further 
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indicating that the N2-methyl-N4-benzyl-quinazolines-2,4-diamine scaffold is key to antibacterial 

activity with these strains. 

 
Table 3.4: Probing Benzoid Ring Substitution of N2-methyl- N4-benzyl-quinazolines-2,4-diamines 

N

N

HN

N
H

R

 

Compound R 
1403 
MIC 
µMa 

1646 
MIC 
µM 

1649 
MIC 
µM 

1650 
MIC 
µM 

1651 
MIC 
µM 

1652 
MIC 
µM 

IC50 
THP-1 
(µM)b 

3.28 6-Cl >50 4 50 50 6 >50 NDc 

3.29 6-Br >50 2 50 >50 >50 >50 ND 

3.30 6-Me >50 6 >50 >50 12 >50 ND 

3.31 6-OMe >50 6 >50 >50 8 >50 ND 

3.32 7-Cl >50 4 >50 >50 >50 >50 ND 

3.33 7-Br >50 4 >50 >50 >50 >50 ND 

3.34 7-Me >50 12 >50 >50 >50 >50 ND 

a The control drug for the in vitro A. baumannii assay is Tigecycline, which displays an MIC= 0.85 µM against 
all tested strains of A. baumannii.  
b Tetracycline is the control compound for the in vitro cytotoxicity assay, exhibiting an IC50 = 148.5 µM 
against the THP-1 cell-line.  
c Not determined. 
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Table 3.5: Probing the benzoid ring of N4-methyl- N2-phenethyl-quinazolin-2,4-diamines 

N

N

HN

N
H

R

 

Compound R 
1403 
MIC 
µMa 

1646 
MIC 
µM 

1649 
MIC 
µM 

1650 
MIC 
µM 

1651 
MIC 
µM 

1652 
MIC 
µM 

IC50 
THP-1 
(µM)b 

3.35 6-H >50 12 >50 >50 >50 >50 NDc 

3.36 6-Cl >50 2 >50 >50 >50 >50 ND 

3.37 6-Ome >50 4 >50 >50 >50 >50 ND 

3.38 6-Br >50 2 >50 >50 10 >50 ND 

3.39 6-Me >50 2 >50 >50 10 >50 ND 

a The control drug for the in vitro A. baumannii assay is Tigecycline, which displays an MIC= 0.85 µM against 
all tested strains of A. baumannii.  
b Tetracycline is the control compound for the in vitro cytotoxicity assay, exhibiting an IC50 = 148.5 µM 
against the THP-1 cell-line.  
c Not determined. 
 
 So far, compound 3.25 has been the compound with the best in vitro activity against 

strain 1403 and it was therefore selected for further development leading to the synthetic 

development of Table 3.6, which aims to explore the extension of substituents at the 6-position 

of the benzoid ring. Due to synthetic restrictions discussed in section 3.1, the generation of the 

alkenyl substituted quinazolines as synthetic intermediates was first needed, which were 

hydrogenated in the subsequent step to yield alkyl-substituted quinazolines. A noticeable trend 

was observed with compounds 3.44-3.50 with large and non-planar side chains being more 

potent. Compound 3.44 with a 6-pentenyl (MIC = 10 µM, strain 1403) compared to 6-pentyl-

substitued analogue 3.45 , (MIC = 2 µM, strain 1403) had a five fold increase in activity. 
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Similarly, an increase in potency was observed starting from the aromatic 6-phenyl-quinazoline 

3.49, to quinazolines with the 6-cyclohexenyl 3.47 and the 6-cyclohexyl 3.48 substitution against 

all strains. The identification of the top compounds 3.44, 3.45, 3.47, and 3.48 were selected for 

cytotoxicity testing. IC50 concentrations from 3.44 and 3.45 remained relatively the same (5.6 

µM and 5.4 µM respectively). However there was an increase in IC50 concentrations from 2.3 

µM for compound 3.47 to 11.1 µM for compound 3.48 proving better selectivity with the most 

potent compound generated by this SAR. 

 
Table 3.6: Probing of the 6-position of N2-benzyl-N4-methyl-quinazolines-2,4-diamines 

N

N

HN

N
H

R

 

Compound R 
1403 
MIC 
µMa 

1646 
MIC 
µM 

1649 
MIC 
µM 

1650 
MIC 
µM 

1651 
MIC 
µM 

1652 
MIC 
µM 

IC50 
THP-1 
(µM)b 

Reference 
3.24 6-Me 10 2 25 50 10 20 12.9 

3.40  25 2 10 20 25 25 NDc 

3.41  30 2 10 30 2 30 ND 

3.42  > 50 2 25 > 50 10 > 50 ND 

3.43  >50 25 35 >50 35 >50 ND 

3.44  10 2 10 25 2 30 5.6 

3.45  2 2 2 2 2 10 5.4 
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Table 3.6 (Continued) 

3.46  > 50 2 50 > 50 30 > 50 ND 

3.47  2 2 10 10 2 30 2.3 

3.48  2 2 2 2 2 10 11.1 

3.49 
 

30 10 20 20 2 50 ND 

3.50 
O

 40 25 > 50 > 50 15 >  50 ND 

a The control drug for the in vitro A. baumannii assay is Tigecycline, which displays an MIC= 0.85 µM against all 
tested strains of A. baumannii.  
b Tetracycline is the control compound for the in vitro cytotoxicity assay, exhibiting an IC50 = 148.5 µM against the 
THP-1 cell-line.  
c Not determined. 
 
3.4 Summary 
 

From the 23 previously reported compounds 3.1-3.23,  three N2,N4-disubstituted 

quinazoline-2,4-diamines 3.1, 3.2, and 3.5 stood out as a good initial hits for the development of 

the A. baumannii antibacterial structure-activity relationship study. Exploring the different 

substitutions at the 6- or 7-position of the benzoid ring led to the identification of compound 3.25 

with an activity in the low micromolar range for the majority of the multi-drug resistant A. 

baumannii strains tested. Further variation of the 6-position side chain developed four new 

compounds 3.44, 3.45, 3.47, and 3.48, with single digit micromolar MIC concentrations for at 

least half of the tested strains.  The identification of N2,N4-disubstituted quinazoline-2,4-diamines 

with single digit micromolar MIC concentrations from the initial SAR shows promise for the 

further development these compounds as antibacterial agents against A. baumannii.  

 



www.manaraa.com

53 
 

 
3.5 Experimental Section 
 
3.5.1 General Information 
 

 All commercially available chemical reagents, except for the boronic acids used, 

and anhydrous solvents were purchased from either Sigma Aldrich, Oakwood Products, Inc. or 

TCI America and used without any further purification. Boronic acids used were purchased 

through Frontier Scientific. NMR spectra were recorded at ambient temperature on a 500 MHz 

Varian NMR spectrometer in the solvent indicated. All 1H NMR experiments are reported in δ 

units, parts per million (ppm) downfield of TMS and were measured relative to the signals for 

chloroform (7.26 ppm), methanol (3.31 ppm) and dimethyl sulfoxide (2.50 ppm). All 13C NMR 

spectra were reported in ppm relative to the signals for chloroform (77 ppm), methanol (49 ppm) 

and dimethyl sulfoxide (39.5 ppm) with 1H decoupled observation. Data for 1H NMR are 

reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = 

quartet, p = pentet, sext = sextet, sept = septet, oct = octet m = multiplet), integration and 

coupling constant (Hz), whereas 13C NMR analyses were reported in terms of chemical shift. 

NMR data was analyzed by using MestReNova Software ver. 5.3.2-4936. High resolution mass 

spectra (HRMS) were performed on an Agilent LC/MSD TOF system G3250AA. Analytical thin 

layer chromatography (TLC) was performed on silica gel 60 F254 pre-coated plates (0.25 mm) 

from EMD Chemical Inc. and components were visualized by ultraviolet light (254 nm). 

Silicycle silica gel 230-400 (particle size 40-63 μm) mesh was used for all flash column 

chromatography. 
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3.5.2 General Procedures 
 
Procedure A: Suzuki-Miyaura Cross Coupling with N2-benzyl-N4-methyl-6-bromo-quinazolin-
2,4-diamine to yield N2-benzyl-N4-methyl-6-alken-yl-quinazlin-2,4-diamine and N2-benzyl-N4-
methyl-6-aryl-quinazoline-2,4-diamine 
 
 One equivalent of N2-benzyl-N4-methyl-6-bromo-quinazolin-2,4-diamine, 1.5 equivalents 

of the boronic acid, 5 mol- % of tetrakis-palladium, a saturated solution of sodium bicarbonate, 

and anhydrous dimethoxyethane were combined in a sealed microwave tube, under argon, and 

heated in the microwave to 150oC. The reaction was monitored by TLC and LCMS until no 

starting material was observed. The reaction was cooled to room temperature, diluted with 

dichloromethane. The organic layer was separated and washed with equal volume of water three 

times, then dried over sodium sulfate. Purification of final product was completed by column 

chromatography using dichloromethane and methanol (dichloromethane/methanol = 10:1). 

 
Procedure B: Hydrogenation of  N2-benzyl-N4-methyl-6-alken-yl-quinazlin-2,4-diamine to yield 
N2-benzyl-N4-methyl-6-alkan-yl-quinazoline-2,4-diamine 
 
 One equivalent of N2-benzyl-N4-methyl-6-alken-yl-quinazlin-2,4-diamine was combined 

with one equivalent of palladium on carbon and hydrogen gas in methanol to afford a 2mg/mL 

solution. The reaction was monitored by LC-MS until no starting material was present. The 

reaction was filtered over celite and rinsed with three equal volumes of methanol.  

Procedure C: Cyclization of Anthranilic Acids to the Corresponding Quinazoline-2,4-diones 
 
 One equivalent of the commercially available anthranilic acid and three equivalents of 

urea were combined in a mortar and pestle until a homogenous mixture was obtained. This 

powder was then transferred to a round bottom flask and heated to 200oC uncovered. After 3 

hours the mixture was cooled, 10 mL of water was added, the solid filtered and subsequently 
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washed with 40 mL of water. Crude product was dried and no further purification was 

completed.  

 
Procedure D: Chlorination of Quinazoline-2,4-diones to the Corresponding 2,4-
Dichloroquinazoline 
 

 One equivalent of quinazoline-2,4-dione and one equivalent of N,N-

dimethylaniline were combined in a round bottom flask, 12 equivalents of phosphorus 

oxychloride was then added. The mixture was refluxed under argon until the presence of starting 

material was no longer seen by TLC or by LC-MS (6-24 hours). Upon completion the reaction 

mixture was cooled and slowly added over ice, amount of ice equaled to ten times that of the 

reaction volume. Upon precipitation the reaction was filtered and washed with water to afford 

the crude 2,4-dichloroquinazoline which was purified by column chromatography using hexane 

and ethyl acetate (hexane/ethyl acetate = 5:1).  

 
Procedure E: Amine Substitution of 2,4-Dichloroquinzaolines to Yield 4-Amino-substituted-2-
chloroquinazoline 
 

 One equivalent of the crude 2,4-dichloroquinazoline, 1.1 equivalents of sodium 

acetate, and 1.1 equivalents of selected primary amine were combined in a round bottom flask 

and mixed with a three to one solution of tetrahydrofuran and water to afford a 0.1 M solution. 

The reaction was heated to 65oC and monitored until no starting material was seen by TLC or 

LC-MS. The reaction was diluted with ethyl acetate and the organic layer separated. This organic 

layer was washed three times with equal amounts of water and then dried over sodium sulfate. 

The crude 4-amino-substituted-2-chloroquinazoline was then purified by column 

chromatography using hexane and ethyl acetate (hexane/ethyl acetate = 5:1). 
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Procedure F: Amine Substitution of 4-Aminosubstutited-2-chloroquinazolines to Yield 2,4-
Diamino-substituted Quinazolines 
 
 One equivalent of 4-aminosubstituted-2-chloroquinazoline and 1.5 equivalents of amine 

were combined with ethanol to create a 0.2 M solution which was heated to 150oC in a sealed 

tube. The reaction was monitored by TLC and LC-MS for the absence of starting material (8-18 

hours). Solvent was evaporated and crude product was purified via column chromatography 

(dichloromethane/methanol 10:1). 

 

3.5.3 Compound Characterization 
 
Compounds 3.1, 3.2, and 3.5 were reported as 2.48, 2.49, 2.50 and 2,4-dichloro-6-
methylquinazoline, 2,4-dichloro-7-methylquinazoline, 2,4,6-trichloroquinazoline, 2,4,7-
trichloroquinazoline, and 2,4-dichloro-6-methoxyquinazoline were reported in the previous 
chapter. Compounds 3.3, 3.4, 3.6-3.23, N-benzyl-2,6-dichloroquinazolin-4-amine, and 2-chloro-
N-methylquinazolin-4-amine were previously reported.2,3 

 
6-bromo-2,4-dichloroquinazoline: 3.0 g (13.9 mmol) of commercially available 2-amino-5-
bromobenzoic acid was reacted according to general procedure C to give crude 6-
bromoquinazoline-2,4(1H,3H)-dione. Without further purification, 3.40 g (14.12 mmol) of crude 
6-bromoquinazoline-2,4(1H,3H)-dione was reacted and purified according to general procedure 
D to give 1.18 g of the title compound as a beige solid in 30 % yield.1H NMR (500 MHz, 
CDCl3) δ 8.41 (d, J = 2.1 Hz, 1H), 8.05 (dd, J = 8.9, 2.1 Hz, 1H), 7.88 (d, J = 8.9 Hz, 1H). 13C 
NMR (126 MHz, CDCl3) δ 162.8, 155.4, 151.0, 139.7, 129.6, 128.2, 123.4, 123.2. Rf = 0.88 
(DCM/MeOH 10:1) 
 
6-bromo-2-chloro-N-methylquinazolin-4-amine: 0.10 g (0.36 mmol) of  6-bromo-2,4-
dichloroquinazoline was reacted with methylamine and purified according to general procedure 
E to furnish 89.0 mg of the title compound in 91 % yield. 1H NMR (500 MHz, CDCl3) δ 7.82 (d, 
J = 2.0 Hz, 1H), 7.79 (dd, J = 8.8, 2.0 Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 5.98 (s, br, 1H), 3.22 (s, 
3H). 13C NMR (126 MHz, CDCl3) δ 160.5, 158.1, 149.4, 136.8, 129.6, 123.4, 119.3, 114.6, 28.7. 
Rf = 0.54 (DCM/MeOH 10:1) 
 
N2-benzyl-6-bromo-N4-methylquinazoline-2,4-diamine (3.24): 80.0 mg (0.29 mmol) of 6-
bromo-2-chloro-N-methylquinazolin-4-amine was reacted with benzylamine and purified 
according to general procedure F to furnish 78.0 mg of the title compound as a white crystalline 
solid in 78 % yield. 1H NMR (500 MHz, DMSO) δ 8.34 (d, J = 2.5 Hz, 1H), 8.16 (s, 1H), 7.71 
(dd, J = 8.8, 2.3 Hz, 1H), 7.50 (d, J = 7.7 Hz, 2H), 7.46 – 7.40 (m, 2H), 7.36 – 7.29 (m, 2H), 4.70 
(s, 2H), 3.08 (s, 3H). HRMS: m/z calculated for C16H15BrN4 [M+H]+ 343.0553; found 343.0544. 
Rf = 0.51 (DCM/MeOH 10:1) 
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2-chloro-N,6-dimethylquinazolin-4-amine: 0.15 g (0.70 mmol) of  2,4-dichloro-6-
methylquinazoline was reacted with methylamine and purified according to general procedure E 
to furnish 95.0 mg of the title compound in 66 % yield. 1H NMR (500 MHz, CDCl3) δ 7.63 (d, J 
= 8.5 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.45 (s, 1H), 6.13 (s, br, 1H), 3.20 (d, J = 4.9 Hz, 3H), 
2.45 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 161.2, 157.0, 148.9, 136.3, 135.2, 127.4, 120.0, 
113.2, 28.5, 21.6. Rf = 0.44 (DCM/MeOH 10:1) 
 
N2-benzyl-N4,6-dimethylquinazoline-2,4-diamine (3.25): 80.0 mg (0.38 mmol) of 2-chloro-
N,6-dimethylquinazolin-4-amine was reacted with benzylamine and purified according to general 
procedure F to furnish 47.0 mg of the title compound as a beige crystalline solid in 57 % yield. 

1H NMR (500 MHz, CDCl3) δ 7.42 – 7.38 (m, 3H), 7.36 (dd, J = 8.5, 1.8 Hz, 1H), 7.34 –7.23 
(m, 4H), 4.74 (s, 2H), 3.09 (d, J = 4.8 Hz, 3H), 2.38 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 
160.5, 158.9, 149.4, 140.1, 134.4, 130.6, 128.4, 127.7, 126.9, 125.1, 120.3, 111.0, 45.6, 28.0, 
21.2. HRMS: m/z calculated for C17H18N4 [M+H]+ 279.1604; found 279.1607. Rf = 0.55 
(DCM/MeOH 10:1) 
 
7-bromo-2,4-dichloroquinazoline: 5.0 g (23.2 mmol) of commercially available 2-amino-6-
bromobenzoic acid was reacted according to general procedure C to give crude 7-
bromoquinazoline-2,4(1H,3H)-dione. Without further purification, 5.20 g (21.6 mmol) of crude 
7-bromoquinazoline-2,4(1H,3H)-dione was reacted and purified according to general procedure 
D to give 2.82 g  of the title compound as a beige solid in 47 % yield. 1H NMR (500 MHz, 
CDCl3) δ 8.19 (d, J = 1.7 Hz, 1H), 8.12 (d, J = 8.9 Hz, 1H), 7.83 (dd, J = 8.9, 1.7 Hz, 1H). 13C 
NMR (126 MHz, CDCl3) δ 164.0, 156.2, 152.8, 133.0, 131.6, 130.5, 127.2, 121.1. Rf = 0.90 
(DCM/MeOH 10:1) 
 
7-bromo-2-chloro-N-methylquinazolin-4-amine: 0.10 g (0.36 mmol) of  7-bromo-2,4-
dichloroquinazoline was reacted with methylamine and purified according to general procedure 
E to furnish 95.0 mg of the title compound in 97 % yield. 1H NMR (500 MHz, CDCl3) δ 7.94 (d, 
J = 1.8 Hz, 1H), 7.56 (dd, J = 8.7, 1.9 Hz, 1H), 7.52 (d, J = 8.7 Hz, 1H), 5.98 (s, 1H), 3.24 (d, J = 
4.9 Hz, 3H). 13C NMR (126 MHz, CDCl3) δ 161.3, 158.8, 151.6, 130.4, 129.6, 128.0, 122.0, 
112.0, 28.6. Rf = 0.35 (DCM/MeOH 10:1) 
 
N2-benzyl-7-bromo-N4-methylquinazoline-2,4-diamine (3.26): 90.0 mg (0.33 mmol) of 7-
bromo-2-chloro-N-methylquinazolin-4-amine was reacted with benzylamine and purified 
according to general procedure F to furnish 58.0 mg of the title compound as a white crystalline 
solid in 51 % yield. 1H NMR (500 MHz, CD3OD) δ 7.69 (d, J = 8.7 Hz, 1H), 7.50 (s, 1H), 7.38 
(d, J = 7.9 Hz, 2H), 7.30 (t, J = 7.7 Hz, 2H), 7.22 (d, J = 7.4 Hz, 1H), 7.19 (dd, J = 8.7, 2.0 Hz, 
1H), 4.67 (s, 2H), 3.03 (s, 3H). 13C NMR (126 MHz, DMSO) δ 161.7, 160.8, 153.8, 141.9, 
129.0, 128.2, 127.5, 127.3, 126.6, 125.6, 123.6, 111.4, 44.8, 28.5. HRMS: m/z calculated for 
C16H15BrN4 [M+H]+ 343.0553; found 343.0548. Rf = 0.59 (DCM/MeOH 10:1) 
 
2-chloro-N4,7-dimethylquinazolin-4-amine: 0.15 g (0.70 mmol) of  2,4-dichloro-7-
methylquinazoline was reacted with methylamine and purified according to general procedure E 
to furnish 0.13 g of the title compound in 86 % yield. 1H NMR (500 MHz, CDCl3) δ 8.12 (d, J = 
8.6 Hz, 1H), 7.75 (s, 1H), 7.55 (dd, J = 8.6, 1.3 Hz, 1H), 3.21 (s, 3H), 2.61 (s, 3H). 13C NMR 
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(126 MHz, CDCl3) δ 161.5, 157.8, 150.8, 144.3, 128.0, 127.0, 120.6, 111.2, 28.5, 21.9. Rf = 0.38 
(DCM/MeOH 10:1) 
 
N2-benzyl-N4,7-dimethylquinazoline-2,4-diamine (3.27): 0.11 g (0.53 mmol) of 2-chloro-N,7-
dimethylquinazolin-4-amine was reacted with benzylamine and purified according to general 
procedure F to furnish 0.13 g of the title compound as a beige crystalline solid in 88 % yield. 1H 
NMR (500 MHz, CDCl3) δ 7.60 (d, J = 8.4 Hz, 1H), 7.51 (s, 1H), 7.25 (dd, J = 8.4, 1.7 Hz, 1H), 
3.20 (d, J = 4.8 Hz, 3H), 4.80 (s, 2H), 2.48 (s, 3H). HRMS: m/z calculated for C17H18N4 [M+H]+ 
279.1604; found 279.1598. Rf = 0.49 (DCM/MeOH 10:1) 
 
N4-benzyl-6-chloro-N2-methylquinazoline-2,4-diamine (3.28): 80.0 mg (0.26 mmol) of N-
benzyl-2,6-dichloroquinazolin-4-amine was reacted with methylamine and purified according to 
general procedure F to furnish 72.0 mg of the title compound as a beige crystalline solid in 67 % 
yield. 1H NMR (500 MHz, CDCl3) δ 7.49 – 7.36 (m, 7H), 7.34 (dd, J = 5.8, 2.7 Hz, 1H), 4.79 (s , 
2H), 3.06 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 160.3, 159.0, 150.8, 138.3, 133.1, 129.0, 
128.8, 128.0, 127.7, 127.3, 125.7, 120.2, 45.2, 28.4. HRMS: m/z calculated for C16H15ClN4 
[M+H]+ 299.1058; found 299.1058. Rf = 0.28 (DCM/MeOH 10:1) 
 
N-benzyl-6-bromo-2-chloroquinazolin-4-amine: 0.10 g (0.36 mmol) of  6-bromo-2,4-
dichloroquinazoline was reacted with benzylamine and purified according to general procedure E 
to furnish 0.13 g of the title compound in 99 % yield. 1H NMR (500 MHz, CDCl3) δ 7.84 – 7.79 
(m, 2H), 7.67 (d, J = 8.8 Hz, 1H), 7.44 – 7.36 (m, 5H), 6.01 (s, br, 1H), 4.86 (d, J = 5.3 Hz, 2H). 
13C NMR (126 MHz, CDCl3) δ 159.6, 158.0, 149.7, 138.3, 136.9, 129.7, 129.0, 128.4, 128.3, 
123.4, 119.4, 114.4, 46.0. Rf = 0.60 (DCM/MeOH 10:1) 
 
N4-benzyl-6-bromo-N2-methylquinazoline-2,4-diamine (3.29): 0.12 g (0.34 mmol) N-benzyl-
6-bromo-2-chloroquinazolin-4-amine was reacted with methylamine and purified according to 
general procedure F to furnish 92.0 mg of the title compound as a beige crystalline solid in 88 % 
yield. 1H NMR (500 MHz, DMSO) δ 8.65 (s, br, 1H), 8.48 (s, 1H), 7.75 (d, J = 8.9, 1H), 7.55 - 
7.40 (m, 5H), 6.81 (s, br, 1H), 4.88 (d, J = 5.8 Hz, 2H), 2.98 (t, J = 3.6 Hz, 3H). 13C NMR (126 
MHz, DMSO) δ 160.8, 159.6, 151.9, 140.4, 135.7, 129.0, 128.3, 127.7, 127.5, 125.9, 113.3, 
112.0, 44.2, 28.6. HRMS: m/z calculated for C16H15BrN4 [M+H]+ 343.0553; found 343.0549. Rf 
= 0.52 (DCM/MeOH 10:1) 
 
N-benzyl-2-chloro-6-methylquinazolin-4-amine: 0.10 g (0.47 mmol) of 2,4-dichloro-6-
methylquinazoline was reacted with benzylamine and purified according to general procedure E 
to furnish 0.13 g of the title compound in 86 % yield. 1H NMR (500 MHz, CDCl3) δ 7.68 (s, 
1H), 7.56 (d, J = 8.4 Hz, 1H), 7.45 – 7.32 (m, 6H), 6.05 (s, br, 1H), 4.86 (s, 2H), 2.47 (s, 3H). 
13C NMR (126 MHz, CDCl3) δ 160.3, 156.9, 149.2, 137.4, 136.39, 135.4, 131.8, 128.9, 128.4, 
127.6, 119.9, 113.0, 45.7, 21.6. Rf = 0.61 (DCM/MeOH 10:1) 
 
N4-benzyl-N2,6-dimethylquinazoline-2,4-diamine (3.30): 0.11 g (0.41 mmol) N-benzyl-2-
chloro-6-methylquinazolin-4-amine was reacted with methylamine and purified according to 
general procedure F to furnish 92.0 mg of the title compound as a beige crystalline solid in 81 % 
yield. 1H NMR (500 MHz, CDCl3) δ 7.39 – 7.28 (m, 8H), 4.81 (d, J = 5.4 Hz, 2H), 3.05 (d, J = 
5.1 Hz, 3H), 2.37 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 159.8, 159.6, 150.1, 138.8, 134.4, 
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130.5, 128.7, 128.0, 127.5, 125.4, 120.1, 110.6, 45.0, 28.5, 21.2. HRMS: m/z calculated for 
C17H18N4 [M+H]+ 279.1604; found 279.1595. Rf = 0.55 (DCM/MeOH 10:1) 
 
N-benzyl-2-chloro-6-methoxyquinazolin-4-amine: 0.10 g (0.51 mmol) of 2,4-dichloro-6-
methoxyquinazoline was reacted with benzylamine and purified according to general procedure 
E to furnish 0.12 g of the title compound in 93 % yield. 1H NMR (500 MHz, CDCl3) δ 7.69 (d, J 
= 9.1 Hz, 1H), 7.38 (m, 6H), 6.95 (d, J 2.4 Hz, 1H), 6.16 (s, br, 1H), 4.86 (d, J = 5.2 Hz, 2H), 
3.86 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 160.1, 157.7, 155.5, 146.1, 137.5, 129.3, 128.9, 
128.4, 128.0, 124.4, 113.6, 100.5, 55.8, 45.8. Rf = 0.63 (DCM/MeOH 10:1) 
 
N4-benzyl-6-methoxy-N2-methylquinazoline-2,4-diamine (3.31): 0.10 g (0.33 mmol) N-
benzyl-2-chloro-6-methoxyquinazolin-4-amine was reacted with methylamine and purified 
according to general procedure F to furnish 85.0 mg of the title compound as a beige crystalline 
solid in 78 % yield. 1H NMR (500 MHz, DMSO) δ 8.74 (s, br, 1H), 7.82 (s, 1H), 7.61 (d, J = 6.7 
Hz, 2H), 7.57 – 7.38 (m, 5H), 6.66 (s, 1H), 4.96 (s, 2H), 4.02 (s, 3H), 3.02 (s, 3H). 13C NMR 
(126 MHz, DMSO) δ 160.2, 159.2, 154.3, 146.5, 140.8, 129.1, 128.4, 127.6, 126.2, 123.9, 111.6, 
104.2, 56.5, 44.3, 28.9. HRMS: m/z calculated for C17H18N4O [M+H]+ 295.1553; found 
295.1543. Rf = 0.29 (DCM/MeOH 10:1) 
 
N-benzyl-2,7-dichloroquinazolin-4-amine: 0.20 g (0.86 mmol) of 2,4,7-trichloroquinazoline 
was reacted with benzylamine and purified according to general procedure E to furnish 0.26 g of 
the title compound in 98 % yield.  1H NMR (500 MHz, CDCl3) δ 7.74 (s, 1H), 7.62 (d, J = 8.8 
Hz, 1H), 7.42 – 7.32 (m, 6H), 6.18 (s, br, 1H), 4.85 (d, J = 5.2 Hz, 2H). 13C NMR (126 MHz, 
CDCl3) δ 160.4, 158.8, 151.7, 139.8, 137.0, 129.0, 128.4, 128.2, 127.1, 127.0, 122.2, 111.5, 45.9. 
Rf = 0.66 (DCM/MeOH 10:1) 
 
N4-benzyl-7-chloro-N2-methylquinazoline-2,4-diamine (3.32): 0.25 g (0.82 mmol) N-benzyl-
2,7-dichloroquinazolin-4-amine was reacted with methylamine and purified according to general 
procedure F to furnish 77.0 mg of the title compound as a beige crystalline solid in 48/ % yield. 
1H NMR (500 MHz, CD3OD) δ 7.85 (d, J = 8.7 Hz, 1H), 7.42 – 7.28 (m, 5H), 7.21 (d, J = 10.6, 
1H), 7.03 (d, J = 8.7, 1H), 4.78 (s, 2H), 2.93 (s, 3H). 13C NMR (126 MHz, CD3OD) δ 160.7, 
160.0, 152.2, 139.3, 138.2, 128.0, 127.3, 126.6, 123.8, 122.2, 120.8, 109.5, 43.9, 27.1. HRMS: 
m/z calculated for C16H15ClN4 [M+H]+ 299.1058; found 299.1046. Rf = 0.38 (DCM/MeOH 
10:1) 
 
N-benzyl-7-bromo-2-chloroquinazolin-4-amine: 0.10 g (0.36 mmol) of 7-bromo-2,4-
dichloroquinazoline was reacted with benzylamine and purified according to general procedure E 
to furnish 0.12 g of the title compound in 97 % yield. 1H NMR (500 MHz, CDCl3) δ 7.94 (s, 
1H), 7.53 (s, 2H), 7.43 – 7.33 (m, 5H), 6.1 (s, br, 1H) 4.85 (d, J = 5.3 Hz, 2H). 13C NMR (126 
MHz, CDCl3) δ 159.6, 158.0, 149.7, 138.3, 136.9, 129.7, 129.0, 128.4, 128.3, 123.4, 119.4, 
114.4, 45.9. Rf = 0.71 (DCM/MeOH 10:1) 
 
N4-benzyl-7-bromo-N2-methylquinazoline-2,4-diamine (3.33): 0.11 g (0.33 mmol) N-benzyl-
7-bromo-2-chloroquinazolin-4-amine was reacted with methylamine and purified according to 
general procedure F to furnish 90.0 mg of the title compound as a beige crystalline solid in 79 % 
yield. 1H NMR (500 MHz, DMSO-d6) δ 8.70 (s, 1H), 8.20 (d, J = 9.0 Hz, 1H), 7.56 (dd, J = 
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27.3, 7.7 Hz, 5H), 7.41 (dd, J = 29.9, 7.6 Hz, 2H), 6.91 (s, 1H), 4.92 (s, 2H), 3.71 (s, 1H), 3.01 
(s, 3H). 13C NMR (126 MHz, DMSO) δ 161.1, 160.4, 154.2, 140.5, 129.1, 128.3, 127.6, 126.7, 
125.8, 123.4, 120.6, 111.1, 44.2, 28.7. HRMS: m/z calculated for C16H15BrN4 [M+H]+ 
343.0553; found 343.0543. Rf = 0.58 (DCM/MeOH 10:1) 
 
N-benzyl-2-chloro-7-methylquinazolin: 0.10 g (0.47 mmol) of 2,4-dichloro-7-
methylquinazoline was reacted with benzylamine and purified according to general procedure E 
to furnish 0.12 g of the title compound in 96 % yield. 1H NMR (500 MHz, CDCl3) δ 7.57 (d, J = 
8.4 Hz, 1H), 7.54 (s, 1H), 7.42 – 7.31 (m, 5H), 7.27 – 7.24 (m, 1H), 4.85 (d, J = 5.3 Hz, 2H), 
2.49 (s, 3H). 13C NMR (126 MHz, CDCl3) δ 160.6, 157.7, 151.1, 144.5, 137.4, 128.9, 128.3, 
128.1, 127.2, 120.6, 111.0, 45.7, 28.4, 21.9. Rf = 0.68 (DCM/MeOH 10:1) 
 
N4-benzyl-N2,7-dimethylquinazoline-2,4-diamine (3.34): 0.10 g (0.35 mmol) N-benzyl-2-
chloro-7-methylquinazolin was reacted with methylamine and purified according to general 
procedure F to furnish 77.0 mg of the title compound as a beige crystalline solid in 76 % yield. 
1H NMR (500 MHz, CDCl3) δ 7.41 – 7.34 (m, 5H), 7.31 (d, J = 6.9 Hz, 2H), 6.89 (d, J = 8.2 Hz, 
1H), 4.80 (d, J = 5.4 Hz, 2H), 3.06 (d, J = 5.0 Hz, 3H), 2.41 (s, 3H). 13C NMR (126 MHz, 
CDCl3) δ 160.3, 159.8, 152.2, 143.2, 138.8, 128.7, 128.0, 127.5, 125.1, 122.8, 120.6, 108.8, 45.0, 
28.4, 21.8. HRMS: m/z calculated for C17H18N4 [M+H]+ 279.1604; found 279.1597. Rf = 0.47 
(DCM/MeOH 10:1) 
 
N4-methyl-N2-phenethylquinazoline-2,4-diamine (3.35): 0.10 g (0.52 mmol) of 2-chloro-N-
methylquinazolin-4-amine was reacted with phenethylamine and purified according to general 
procedure F to furnish 55.0 mg of the title compound as a beige crystalline solid in 55 % yield. 
1H NMR (500 MHz, CDCl3) δ 8.08 – 8.02 (m, 2H), 7.78 (td, J = 7.5, 1.5 Hz, 1H), 7.52 (td, J = 
7.5, 1.5 Hz, 1H), 7.31 – 7.23 (m, 2H), 7.26 (s, 3H), 7.27 – 7.16 (m, 1H), 3.58 (s, 1H), 3.51 (t, J = 
5.2 Hz, 2H), 2.91 (s, 2H), 2.79 – 2.73 (m, 3H). 13C NMR (126 MHz, CDCl3) δ 160.9, 159.4, 
151.1, 139.6, 132.7, 128.9, 128.6, 126.2, 124.7, 121.4, 121.1, 111.3, 42.9, 36.3, 28.0. HRMS: 
m/z calculated for C17H18N4 [M+H]+ 278.1531; found 278.1529. Rf = 0.40 (DCM/MeOH 10:1) 
 
 
6-chloro-N4-methyl-N2-phenethylquinazoline-2,4-diamine (3.36): 90.0 mg (0.39 mmol) 2,6-
dichloro-N-methylquinazolin-4-amine was reacted with phenethylamine and purified according 
to general procedure F to furnish 55.0 mg of the title compound as a beige crystalline solid in 48 
% yield. 1H NMR (400 MHz, CDCl3) δ 7.44 – 7.40 (m, 2H), 7.35 (d, J = 9.4 Hz, 1H), 7.31 – 
7.24 (m, 4H), 7.23 – 7.17 (m, 1H), 3.08 (d, J = 4.8 Hz, 3H), 2.93 (t, J = 7.2 Hz, 2H), 1.22 (t, J = 
7.0 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 160.0, 159.7, 150.5, 139.6, 133.0, 128.9, 128.5, 
127.1, 126.3, 125.6, 120.3, 111.8, 42.8, 36.2, 28.1. HRMS: m/z calculated for C17H17ClN4 
[M+H]+ 312.8073; found 312.7996. Rf = 0.38 (DCM/MeOH 10:1) 
 
6-methoxy-N4-methyl-N2-phenethylquinazoline-2,4-diamine (3.37): 60.0 mg (0.20 mmol) 
2,4-dichloro-6-methoxyquinazoline was reacted with phenethylamine and purified according to 
general procedure F to furnish 17.0 mg of the title compound as a beige crystalline solid in 23 % 
yield. 1H NMR (500 MHz, CDCl3) δ 7.43 (d, J = 9.1 Hz, 1H), 7.31 (t, J = 7.4 Hz, 2H), 7.29 – 
7.26 (m, 2H), 7.22 (dt, J = 9.1, 2.6 Hz, 2H), 6.88 (d, J = 2.7 Hz, 1H), 3.80 – 3.75 (m, 2H), 3.14 
(d, J = 4.7 Hz, 3H), 2.96 (t, J = 7.2 Hz, 2H). 13C NMR (126 MHz, CDCl3) δ 160.3, 158.2, 154.3, 
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145.8, 139.6, 128.9, 128.6, 128.5, 126.2, 123.2, 110.8, 101.6, 55.7, 42.9, 36.3, 28.2. HRMS: m/z 
calculated for C18H20N4 [M+H]+ 232.1868; found 232.1869. Rf = 0.29 (DCM/MeOH 10:1) 
 
6-bromo-N4-methyl-N2-phenethylquinazoline-2,4-diamine (3.38): 65.0 mg (0.24 mmol) 6-
bromo-2-chloro-N-methylquinazolin-4-amine was reacted with phenethylamine and purified 
according to general procedure F to furnish 31.0 mg of the title compound as a beige crystalline 
solid in 37 % yield. 1H NMR (500 MHz, CDCl3) δ 7.64 (d, J = 2.2 Hz, 1H), 7.57 (dd, J = 8.9, 2.2 
Hz, 1H), 7.32 (t, J = 7.5 Hz, 3H), 7.29 – 7.25 (m, 2H), 7.25 – 7.21 (m, 1H), 3.81 – 3.73 (m, 2H), 
3.11 (d, J = 4.6 Hz, 3H), 2.96 (t, J = 7.2 Hz, 2H).  HRMS: m/z calculated for C17H17BrN4 
[M+H]+ 357.0714; found 357.0714. Rf = 0.59 (DCM/MeOH 10:1) 
 
N4,6-dimethyl-N2-phenethylquinazoline-2,4-diamine (3.39): 75.0 mg (0.36 mmol) 2-chloro-
N,6-dimethylquinazolin-4-amine was reacted with phenethylamine and purified according to 
general procedure F to furnish 49.0 mg of the title compound as a beige crystalline solid in 46 % 
yield. 1H NMR (500 MHz, CDCl3) δ 7.39 (d, J = 8.3 Hz, 3H), 7.35 (d, J = 8.5 Hz, 5H), 7.33 – 
7.28 (m, 9H), 7.26 (d, J = 7.4 Hz, 6H), 7.21 (d, J = 6.5 Hz, 7H), 3.78 (s, 6H), 3.09 (s, 9H), 2.96 
(dd, J = 13.7, 6.5 Hz, 10H), 2.34 (s, 9H). HRMS: m/z calculated for C18H20N4O [M+H]+ 
293.1764; found 293.1761. Rf = 0.34 (DCM/MeOH 10:1) 
 
N2-benzyl-N4-methyl-6-vinylquinazoline-2,4-diamine (3.40): 50.0 mg (0.14 mmol) of N2-
benzyl-6-bromo-N4-methylquinazoline-2,4-diamine was reacted with commercially available 
vinyl boronic acid dibutyl ester and purified according to general procedure A to furnish 13.0 mg 
of the title compound as a yellow solid in 31 % yield. 1H NMR (500 MHz, CD3OD) δ 7.85 (d, J = 
1.9 Hz, 1H), 7.69 (dd, J = 8.7, 1.9 Hz, 1H), 7.40 – 7.36 (m, 2H), 7.32 – 7.28 (m, 3H), 7.24 – 7.20 
(m, 1H), 6.75 (dd, J = 17.6, 11.0 Hz, 1H), 5.82 – 5.76 (m, 1H), 5.22 (d, J = 11.0 Hz, 1H), 4.68 (s, 
2H), 3.05 (s, 3H). HRMS: m/z calculated for C18H18N4 [M+H]+ 291.1636; found 291.1633. Rf = 
0.33 (DCM/MeOH 10:1) 
 
N2-benzyl-6-ethyl-N4-methylquinazoline-2,4-diamine (3.41): 10.0 mg (0.03 mmol) of N2-
benzyl-N4-methyl-6-vinylquinazoline-2,4-diamine was reacted with palladium on carbon and 
purified according to general procedure B to furnish 7.0 mg of the title compound as a yellow 
solid in 70 % yield. 1H NMR (500 MHz, CDCl3) δ 7.45 – 7.38 (m, 4H), 7.34 – 7.29 (m, 3H), 
7.25 (d, J = 7.0 Hz, 1H), 4.73 (d, J = 4.7 Hz, 2H), 3.10 (d, J = 4.7 Hz, 3H), 2.68 (d, J = 7.6 Hz, 
2H), 1.27 – 1.25 (m, 3H). HRMS: m/z calculated for C18H20N4 [M+H]+ 293.1765; found 
293.1768.  
 
N2-benzyl-N4-methyl-6-(prop-1-en-2-yl)quinazoline-2,4-diamine (3.42): 80.0 mg (0.23 mmol) 
of N2-benzyl-6-bromo-N4-methylquinazoline-2,4-diamine was reacted with commercially 
available isopentyl pinacol boronic ester and purified according to general procedure A to 
furnish 22.0 mg of the title compound as a yellow solid in 31 % yield. 1H NMR (500 MHz, 
CDCl3) δ 8.07 (s, 1H), 7.60 (d, J = 8.8 Hz, 1H), 7.32 (d, J = 7.7 Hz, 2H), 7.28 – 7.23 (m, 3H), 
7.21 (d, J = 7.2 Hz, 1H), 5.46 (s, 1H), 5.06 (s, 1H), 4.64 (s, 2H), 3.08 (s, 3H), 2.16 (s, 3H). 
HRMS: m/z calculated for C19H20N4 [M+H]+ 305.1765; found 305.1766.  
 
N2-benzyl-6-isopropyl-N4-methylquinazoline-2,4-diamine (3.43): 10.0 mg (0.03 mmol) of N2-
benzyl-N4-methyl-6-(prop-1-en-2-yl)quinazoline-2,4-diamine was reacted with palladium on 
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carbon and purified according to general procedure B to furnish 5.0 mg of the title compound as 
a yellow solid in 50 % yield. 1H NMR (500 MHz, CD3OD) δ 7.83 (d, J = 1.9 Hz, 1H), 7.59 (dd, J 
= 8.5, 1.9 Hz, 1H), 7.40 (d, J = 7.2 Hz, 2H), 7.33 (t, J = 7.6 Hz, 3H), 7.27 – 7.23 (m, 1H), 4.72 (s, 
2H), 3.0 (p, J = 6.9 Hz, 1H), 1.31 (s, 3H), 1.30 (s, 3H). HRMS: m/z calculated for C19H22N4 
[M+H]+ 307.1643; found 307.1643.  
 
(E)-N2-benzyl-N4-methyl-6-(pent-1-en-1-yl)quinazoline-2,4-diamine (3.44): 80.0 mg (0.23 
mmol) of N2-benzyl-6-bromo-N4-methylquinazoline-2,4-diamine was reacted with commercially 
available (E)-1-Pentenyl pinacol boronic ester and purified according to general procedure A to 
furnish 24.0 mg of the title compound as a yellow solid in 31 % yield. 1H NMR (500 MHz, 
CDCl3) δ 7.62 (s, 1H), 7.53 (t, J = 7.1 Hz, 1H), 7.36 (d, J = 8.0 Hz, 3H), 7.31 – 7.26 (m, 2H), 
7.23 (t, J = 5.0 Hz, 1H), 6.34 (dd, J = 16.0, 3.8 Hz, 1H), 6.21 (dt, J = 14.2, 6.7 Hz, 1H), 4.68 (s, 
2H), 3.08 (d, J = 4.0 Hz, 3H), 2.15 (t, J = 6.5 Hz, 2H), 1.51 – 1.43 (m, 2H), 1.27 (s, 1H), 0.93 (td, 
J = 7.4, 3.4 Hz, 3H). HRMS: m/z calculated for C21H24N4 [M+H]+ 333.2064; found 333.2064.  
 
N2-benzyl-N4-methyl-6-pentylquinazoline-2,4-diamine (3.45): 11.0 mg (0.03 mmol) of (E)-
N2-benzyl-N4-methyl-6-(pent-1-en-1-yl)quinazoline-2,4-diamine was reacted with palladium on 
carbon and purified according to general procedure B to furnish 7.0 mg of the title compound as 
a yellow solid in 70 % yield. 1H NMR (500 MHz, CD3OD) δ 7.67 (d, J = 1.8 Hz, 1H), 7.43 (dd, J 
= 8.5, 1.9 Hz, 1H), 7.38 (d, J = 7.2 Hz, 2H), 7.30 (td, J = 8.5, 8.0, 2.5 Hz, 3H), 7.24 – 7.20 (m, 
1H), 4.68 (s, 2H), 3.05 (s, 3H), 2.67 (t, J = 7.7 Hz, 2H), 1.70 – 1.62 (m, 3H), 1.38 – 1.32 (m, 4H), 
0.91 (t, J = 6.9 Hz, 3H). HRMS: m/z calculated for C21H26N4 [M+H]+ 335.2083; found 335.2083.  
 
N2-benzyl-6-(cyclopent-1-en-1-yl)-N4-methylquinazoline-2,4-diamine (3.46): 80.0 mg (0.23 
mmol) of N2-benzyl-6-bromo-N4-methylquinazoline-2,4-diamine was reacted with commercially 
available 1-Cyclopentenylboronic acid pinacol ester and purified according to general procedure 
A to furnish 8.0 mg of the title compound as a yellow solid in 10 % yield. 1H NMR (500 MHz, 
CDCl3) δ 7.74 (dd, J = 8.7, 2.0 Hz, 1H), 7.41 (dd, J = 8.0, 3.8 Hz, 4H), 7.32 (t, J = 7.4 Hz, 2H), 
7.27 (d, J = 2.9 Hz, 1H), 6.18 (t, J = 2.3 Hz, 1H), 4.74 (d, J = 4.9 Hz, 2H), 3.12 (d, J = 4.6 Hz, 
3H), 2.76 – 2.70 (m, 2H), 2.56 (ddt, J = 7.7, 5.1, 2.5 Hz, 2H), 2.08 – 2.02 (m, 2H). HRMS: m/z 
calculated for C21H22N4 [M+H]+ 331.1999; found 331.1995.  
 
N2-benzyl-6-(cyclohex-1-en-1-yl)-N4-methylquinazoline-2,4-diamine (3.47): 80.0 mg (0.14 
mmol) of N2-benzyl-6-bromo-N4-methylquinazoline-2,4-diamine was reacted with commercially 
available cyclohexenyl boronic acid and purified according to general procedure A to furnish 
11.0 mg of the title compound as a yellow solid in 14 % yield. 1H NMR (500 MHz, CD3OD) δ 
7.85 (d, J = 2.0 Hz, 1H), 7.68 (dd, J = 8.7, 2.1 Hz, 1H), 7.39 (d, J = 7.2 Hz, 2H), 7.30 (dt, J = 9.9, 
7.7 Hz, 3H), 7.25 – 7.21 (m, 1H), 6.19 (dt, J = 4.1, 2.2 Hz, 1H), 4.69 (s, 2H), 3.07 (s, 3H), 2.46 
(ddt, J = 6.3, 4.2, 2.1 Hz, 2H), 2.27 – 2.21 (m, 2H), 1.85 – 1.79 (m, 2H), 1.72 – 1.66 (m, 3H). 
HRMS: m/z calculated for C22H24N4 [M+H]+ 345.2078; found 345.2077.  
 
N2-benzyl-6-cyclohexyl-N4-methylquinazoline-2,4-diamine (3.48): 10.0 mg (0.03 mmol) of 
N2-benzyl-6-(cyclohex-1-en-1-yl)-N4-methylquinazoline-2,4-diamine was reacted with palladium 
on carbon and purified according to general procedure B to furnish 8.0 mg of the title compound 
as a yellow solid in 80 % yield. 1H NMR (500 MHz, CD3OD) δ 7.70 (d, J = 1.9 Hz, 1H), 7.46 
(dd, J = 8.6, 2.0 Hz, 1H), 7.39 (d, J = 7.2 Hz, 2H), 7.30 (dd, J = 8.5, 6.7 Hz, 3H), 7.24 – 7.20 (m, 
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1H), 4.68 (s, 2H), 3.05 (s, 3H), 2.57 (ddd, J = 11.5, 8.3, 3.2 Hz, 1H), 1.88 (ddt, J = 8.9, 6.2, 3.0 
Hz, 4H), 1.48 (dddd, J = 19.2, 12.8, 10.4, 3.3 Hz, 4H), 1.35 – 1.30 (m, 2H). HRMS: m/z 
calculated for C22H26N4 [M+H]+ 347.2235; found 347.2231.  
 
N2-benzyl-N4-methyl-6-phenylquinazoline-2,4-diamine (3.49): 50.0 mg (0.14 mmol) of N2-
benzyl-6-bromo-N4-methylquinazoline-2,4-diamine was reacted with commercially available 
phenyl boronic acid and purified according to general procedure A to furnish 11.0 mg of the title 
compound as a yellow solid in 22 % yield. 1H NMR (500 MHz, CD3OD) δ 8.19 – 8.16 (m, 1H), 
7.91 – 7.87 (m, 1H), 7.68 (d, J = 7.7 Hz, 2H), 7.48 – 7.40 (m, 5H), 7.34 (q, J = 7.6 Hz, 3H), 7.25 
(d, J = 7.3 Hz, 1H), 4.72 (s, 2H), 3.09 (s, 3H). HRMS: m/z calculated for C22H20N4 [M+H]+ 
341.1763; found 341.1763. Rf = 0.36 (DCM/MeOH 10:1) 
 
N2-benzyl-6-(furan-2-yl)-N4-methylquinazoline-2,4-diamine (3.50): 50.0 mg (0.14 mmol) of 
N2-benzyl-6-bromo-N4-methylquinazoline-2,4-diamine was reacted with commercially available 
2-furyl boronic acid and purified according to general procedure A to furnish 6.0 mg of the title 
compound as a yellow solid in 13 % yield. 1H NMR (500 MHz, CD3OD) δ 8.20 (d, J = 1.9 Hz, 
1H), 7.88 (dd, J = 8.8, 1.9 Hz, 1H), 7.56 (d, J = 1.8 Hz, 1H), 7.40 (d, J = 7.2 Hz, 2H), 7.36 (d, J = 
8.8 Hz, 1H), 7.31 (t, J = 7.7 Hz, 2H), 7.23 (t, J = 7.4 Hz, 1H), 6.76 (d, J = 3.3 Hz, 1H), 6.53 (dd, 
J = 3.4, 1.8 Hz, 1H), 4.69 (s, 2H), 3.07 (s, 3H). HRMS: m/z calculated for C20H18N4O [M+H]+ 
331.1551; found 331.1549. Rf = 0.43 (DCM/MeOH 10:1) 
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Chapter 4: Future Plans 
 
4.1 2,4-disubstituted Quinazolines as Anitleishmanials 
 
 After the initial SAR conducted by the Manetsch lab in 2014 a secondary SAR was 

completed.1 Quinazoline-2,4-diamines with aromatic substituents at both N2 and N4 exhibited 

potent in vitro antileishmanial activity but relatively low selectivity, while compounds 

substituted with small alkyl groups at either N2 or N4 generally showed lower antileishmanial 

potency but were less toxic to a murine macrophage cell line.2 Based on their in vitro 

antileishmanial potency, N4-benzyl-N2-(4-chlorobenzyl)quinazoline-2,4-diamine (2.6) and N2-

benzyl-N4-isopropylquinazoline-2,4-diamine (2.31) were selected for in vivo evaluation of their 

pharmacokinetic and antileishmanial properties. While 2.6 displayed a longer plasma half-life 

and a greater area under the curve than 2.31, both compounds showed low efficacy in an acute 

murine visceral leishmaniasis model.2 Although there is still some hindrance in dosing caused by 

the toxicity of the compounds in in vivo murine models, preliminary data from hamster studies 

shows a promising lead with decreased toxicity, for the animal, at higher concentrations for the 

quinazoline class. The expanded SAR conducted found that the introduction of a piperazine 

moiety can help increase the antileishmanial selectivity index but does decreases the EC50 

activity within the L. donovani in vitro testing. Further investigation of these molecules to 

increase their efficacy while retaining their selectivity could yield promising analogues with 

more favorable properties, which would be useful for further biological testing of this series. 
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4.2 2,4-Disubstituted Quinazolines as Antibacterials 
 
 Top compounds from previously reported 2,4-disubstituted-quinazolin-2,4-amines with 

the Manetsch lab were tested against A. baumannii to determine the initial series with which an 

SAR can be constructed.1-3 With the development of an initial SAR dedicated to antibacterial 

activity against mulit-drug resistant A. baumannii identification of six compounds, 3.24, 3.25, 

3.44, 3.45, 3.47, and 3.48, with low to single digit micromolar MIC concentrations against all 

tested strains were identified. Substitution changes varying form the N2-methyl- N4-benzyl-

quinazolines-2,4-diamine scaffold decreased efficacy of the compounds. Whereas the addition of 

a large, non-planar side chains to the 6-position helped to increase both efficacy and antibacterial 

selectivity as seen in 3.48. Cytotoxicity data for the top six compounds indicated little selectivity 

over the THP-1 cell line. Improvement of this antibacterial selectivity while retaining and/or 

improvement of the efficacy are required for the further biological study of these compounds. 

Compound 3.25 and 3.48 are potential candidates for further biological testing and in vivo testing 

due to their low single digit MIC concentrations along with the highest IC50 values. Further 

expansion of this SAR with substitutions in the 5- or 8-position could be studied as well as 

introducing larger, non-planer substituents in the 6-position to determine if this could aid in the 

selectivity problem or improve the efficacy. 
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